بحث متقدم
ترتيب حسب
فلترة حسب
تُعتبر القدرة على التقدير والتنبّؤ الدقيق بالظواهر الهيدرولوجيّة من العوامل الأساسيّة في تنمية وإدارة الموارد المائيّة، ووضع الخطط المائيّة المستقبليّة وفق سيناريوهات التغيّرات المناخيّة المختلفة، ويعد التبخّر نتح أحد أهم العوامل في الدورة الهيدرولوج يّة ومن أكثرها تعقيداً، كما أنّ القدرة على التنبّؤ الدقيق بقيم هذه الظاهرة هي من العوامل المهمّة في العديد من تطبيقات الموارد المائيّة. لذلك تهدف هذه الدراسة إلى التنبّؤ بقيم التبخر نتح المرجعي الشهري (ET0) في محطّة حمص المناخيّة، في المنطقة الوسطى من الجمهوريّة العربيّة السوريّة، باستخدام الشبكات العصبيّة الاصطناعيّة (ANNs) ونظام الاستدلال الضبابي (FIS)، بالاعتماد على البيانات المناخيّة المتاحة، والمقارنة بين نتائج هذه النماذج. تضمّنت البيانات المستخدمة 347 قيمة شهريّة لدرجة حرارة الهواء (T)، الرطوبة النسبيّة(RH) ، سرعة الرياح(WS) وعدد ساعات السطوع الشمسي(SS) (من تشرين الأول 1975 وحتى كانون الأول 2004)، في حين حُسبت قيم التبخّر نتح المرجعي الشهري باستخدام طريقة بنمان مونتيث، والتي هي الطريقة المرجعيّة المعتمدة من قبل المنظمة الدوليّة للزراعة والأغذية التابعة للأمم المتحدة (FAO)، واستُخدمت هذه القيم كمخرجات للنماذج. أظهرت نتائج الدراسة أنّ نماذج الشبكات العصبيّة الاصطناعيّة ذات التغذية الأماميّة والانتشار العكسي للخطأ تمكّنت من التنبّؤ بقيم التبخّر نتح المرجعي الشهري بنجاح، حيث أعطت النماذج قيماً منخفضة لجذر متوسّط مربّعات الأخطاء (RMSE) ومرتفعة لمعاملات الارتباط(R) ، وكذلك تبيّن أنّ استخدام ترتيب الشهر كمُدخل إضافي يُحسّن من دقّة التنبّؤ للشبكات العصبيّة الاصطناعيّة. أظهرت النتائج أيضاً القدرة الجيّدة لنماذج الاستدلال الضبابي على التنبّؤ بقيم التبخّر نتح المرجعي الشهري، حيث تبيّن أن عدد ساعات السطوع الشمسي هي أكثر العوامل المناخيّة المنفردة تأثيراً في عمليّة التنبّؤ، حيث بلغ معامل الارتباط 97.71% وجذر متوسّط مربّعات الأخطاء 18.08 mm/month خلال مرحلة الاختبار للنموذج، في حين كان عدد ساعات السطوع الشمسي وسرعة الرياح أكثر عاملين مؤثرين سويةً على عمليّة التنبّؤ بمعامل ارتباط 98.55% وجذر متوسّط مربّعات أخطاء 12.49 mm/month خلال مرحلة الاختبار للنموذج. أظهر هذا البحث الموثوقيّة العالية لاستخدام الشبكات العصبيّة الاصطناعيّة ونظام الاستدلال الضبابي في التنبّؤ بقيم التبخر نتح المرجعي الشهري، مع وجود أفضليّة بسيطة للشبكات العصبيّة الاصطناعيّة، والتي يمكن أن تضيف ترتيب الشهر إلى طبقة المدخلات الأمر الذي يزيد من دقّة التنبّؤات. توصي هذه الدراسة بالتوسّع في استخدام تقنيّات الذكاء الاصطناعي في نمذجة الظواهر المعقّدة واللاخطيّة المتعلقة بالموارد المائيّة.
يعتبر التبخر- نتح أحد المكونات الهامة في الدورة الهيدرولوجية، و تعد القدرة على التنبؤ الدقيق بقيم هذه الظاهرة من العوامل الهامة في العديد من تطبيقات الموارد المائية. تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري, باستخدام الشبكات العصبية الاصطناعية و نظام الاستدلال الضبابي.
تتضمن هذه الدراسة إمكانية استخدام الشبكات العصبية الاصطناعية مع خوارزمية الانتشار العكسي في التنبؤ قصير المدى بمناسيب بحيرة قطينة على نهر العاصي, مع الإشارة على أن البيانات المستخدمة هي بيانات مناسيب المياه في البحيرة و بيانات الأمطار للفترة الممتدة بين ( 1\5\2007 - 28\2\2009 ).
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة م ن أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.