بحث متقدم
ترتيب حسب
فلترة حسب
تستخدم الشبكة العصبية الصنعية طريقة تعلم استقرائي، و تتطلب بشكل عام أمثِلة لبيانات التدريب، بينما تستخدم الخوارزمية الجينية تعلم اقتطاعي، و تتطلب تابع هدف. لقد تمّ تنظيم التعاون بين هاتين التقانتين في دراستنا هذه بغرض تعزيز أداء كل تقانة من خلال بن اء نظام هجين منهما، عن طريق كتابة برمجيّة عامّة باستخدام برنامج MATLAB بغرض الاختيار الفعّال لمتحولات الدخل لعمليات التنبؤ، و أمثلة أوزان شبكة البيانات قيد الدراسة، و من ثمّ تطبيق هذه البرنامج على بيانات يوميّة، تمّ جمعها من حوض نهر الكبير الجنوبي هي (الهطول، التبخر، الحرارة، الرطوبة النسبية و الجريان النهري بتأخر زمني مقداره يوم واحد) بغرض التنبؤ بالجريان النهري.
يعتبر التبخر- نتح أحد المكونات الهامة في الدورة الهيدرولوجية، و تعد القدرة على التنبؤ الدقيق بقيم هذه الظاهرة من العوامل الهامة في العديد من تطبيقات الموارد المائية. تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري, باستخدام الشبكات العصبية الاصطناعية و نظام الاستدلال الضبابي.
تهدف هذه الدراسة إلى تحديد العناصر المناخية الأكثر تأثيرا على علاقة الهطل - جريان لنهر الكبير الشمالي, باستخدام الشبكات العصبية الاصطناعية. حيث احتوت مدخلات الشبكات العصبية على الهطل المطري و التدفق في النهر, وفق تأخرات زمنية مختلفة, بالإضافة إلى هنص ر من العناصر المناخية في كل نموذج من النماذج, لتحديد النموذج الأفضل و الأكثر دقة.
تعتبر الأمطار من الظواهر غير الخطية المعقدة، و التي تتطلب النمذجة الرياضية غير الخطية لغرض التنبؤ بها. هذه الدراسة تقارن أداء التنبؤ بالأمطار ليوم مقدماً، حيث وضعت اثنين من نماذج الشبكات العصبونية (ذات التغذية الأمامية) للتنبؤ بأمطار يومية متتالية لثلاثة أشهر (كانون الأول، كانون الثاني، شباط) و هذه النماذج هي: نموذج الشبكات العصبية الاصطناعية التقليدية (ANN) و نموذج عصبوني مع تقنية التحويل المويجي وفق (wavelet- neural) طريقتين مختلفتين لبناء النماذج و باستخدام نوعين من المويجات من عائلة دوبغنز (db2, db5) و من أجل المقارنة بين أداء النماذج في قدرتها على التنبؤ بالأمطار على المدى القصير (ليوم و يومين و ثلاثة أيام مقدماً) للأشهر الأخيرة من فترة الدراسة، فقد استخدمت بعض المعايير الإحصائية، التي اشتملت على جذر متوسط مربعات الأخطاء (RMSE) و معامل الارتباط (R).
تتضمن هذه الدراسة إمكانية استخدام الشبكات العصبية الاصطناعية مع خوارزمية الانتشار العكسي في التنبؤ قصير المدى بمناسيب بحيرة قطينة على نهر العاصي, مع الإشارة على أن البيانات المستخدمة هي بيانات مناسيب المياه في البحيرة و بيانات الأمطار للفترة الممتدة بين ( 1\5\2007 - 28\2\2009 ).
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة م ن أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.
نظراً لأهمية المياه و ازدياد الحاجة إليها في الوقت الحاضر نتيجةً للتطور الكبير الحاصل في جميع مجالات الحياة الاقتصادية و الاجتماعية, و باعتبار التقييم و التخطيط و إدارة المصادر المائية أحد المواضيع الهامة في الحياة البشرية و بالأخص في المناطق التي تت ميز بندرة الهطولات المطرية أو التي يكون فيها التوزيع المطري رديئاً أو غير منتظم بحيث لا يمكن استخدامه للأغراض المختلفة. من هنا أتت أهمية البحث في التنبؤ بالهطل المطري في محطة حصن سليمان, و لتحقيق هذا الهدف فقد استُخدمت بيانات السلسلة الزمنية لمعدل الهطل المطري السنوي في محطة حصن سليمان الواقعة في محافظة طرطوس على خط الطول 36°15' و خط العرض 34°56' للفترة بين عامي 1959-2011, و قد استُخدمت في الدراسة منهجية بوكس – جنكنز التي تعتمد على إيجاد التنبؤات المستقبلية لسلسلة البيانات الأصلية. كما تم استخدام البرامج Minitab و Excel في الجانب الإحصائي و إعداد نتائج الدراسة. توصلت الدراسة إلى أن الهطل المطري في محطة حصن سليمان متناقص و قد بلغ هذا التناقص 3,7 ملم في العام خلال فترة الرصد, كما توصلت إلى بناء نموذج (ARIMA) المناسب للسلسلة بعد أن اجتاز مختلف الاختبارات الإحصائية المطلوبة، و كان النموذج (ARIMA(1,0,0 هو النموذج المناسب لتمثيل البيانات و النموذج (ARIMA(4,1,5 هو النموذج المناسب للتنبؤ بالهطل المطري المستقبلي.
تهدف هذه الدراسة إلى بناء أنموذج رياضي لتقدير التبخر من المنطقة الجبلية من الساحل السوري، باستخدام الشبكة العصبية الصنعيَّة و ذلك اعتماداً على أربعة بارمترات جوية، و هي درجة الحرارة، الرطوبة النسبية، سرعة الرياح و السطوع الشمسي، و من ثم دراسة تأثير إ ضافة معامل الزمن على تقدير التبخر. بني الأنموذج الرياضي باستخدام Neural Fitting Tool إحدى أدوات الماتلاب، و قد اعتمد على البيانات اليومية للبارامترات المذكورة في منطقة الدراسة بالإضافة إلى معامل الزمن، كما استُخدِمت بيانات التبخر اليومي المقيسة بوساطة حوض التبخر الأميركي صنف A كمخرجات مأمولة لغرض التحقق من صحة أداء الشبكة. و تظهر النتائج تفوق الشبكة المضاف لها معامل الزمن حيث بلغ معامل الارتباط فيها لمجموعة التحقق 0.8919 و متوسط مربع الخطأ 0.02166 بينما كانت قيمة معامل الارتباط للشبكة المستخدمة للتنبؤ بقيمة التبخر اعتماداً على المعطيات المناخية بدون إدخال معامل الزمن 0.8324 و متوسط مربع الخطأ 0.0327.
يعدّ الهطل المطري أحد أكثر عناصر الدورة الهيدرولوجية صعوبة و تعقيداً من حيث الفهم و النمذجة، بسبب تعقيد العمليات الجوية التي تولد الأمطار. تأتي أهمية البحث من العلاقة المباشرة لكميات الأمطار الهاطلة بالأنشطة الاقتصادية و الاجتماعية للسكان، و مجالات ا لتخطيط لإدارة الموارد المائية، لا سيما ما يتعلق منها بعملية التنمية الزراعية. يهدف البحث إلى إلقاء الضوء على كميات الأمطار الهاطلة في محطة طرطوس الواقعة في الجزء الجنوبي من الساحل السوري، و تطبيق نموذج من نماذج بوكس- جنكنز للتنبؤ بكمياتها المستقبلية. تم اختبار نماذج متعددة لـ ARIMA، و أخضعت النماذج لجميع الاختبارات المطلوبة، و قد تبين أن أفضلها كان النموذج ذي المعالم (ARIMA(3,0,4. جرى أثناء الاختبار تقسيم البيانات إلى 43 سنة لبناء النموذج، و ثماني سنوات لاختباره، و قد أعطت نتائج الاختبار دقةً عاليةً في الأداء، كما استخدم النموذج للتنبؤ بقيم الأمطار السنوية لعشرين سنة قادمة.
تعدّ النمذجة الدقيقة للعلاقة بين الهطول المطري_الجريان السطحي (Rainfall_Runoff) (R_R) مهمة معقدة جدّاً, على الرغم من حقل النمذجة الواسع الذي يشمل كلّاً من الطرائق الموجهة بالمعرفة و الطرائق الموجهة بالبيانات. تتطلب النماذج الموجهة بالمعرفة كمية ضخمة من البارامترات، و بالتالي فهي تعاني من تأثير كثرة البارامترات. هذا مايجعل العاملين في حقل النمذجة يبحثون عن طرائق نمذجة بسيطة تتطلب عدد قليل من البارامترات مثل الطرائق الموجهة بالبيانات, لذلك تهدف الدراسة الحالية إلى استخدام الشبكات العصبية الصنعية التي تعدّ إحدى أنواع هذه الطرائق لنمذجة العلاقة R_R في حوض نهر الكبير الجنوبي في محافظة طرطوس. حيث تمّ الاعتماد على شبكة Elman الصنعية للتنبؤ بالجريان السطحي باختبار أربعة و عشرين نموذجاً ذات معماريات مختلفة, كما تمّ اختبار كلّ نموذج باستخدام عدد مختلف من العصبونات الخفية, و ذلك باستخدام مكتبة nntool المتاحة في حزمة برمجيات Matlab. أثبتت نتائج هذه الدراسة أن النموذج الذي يحوي في طبقة المدخلات على كلٍّ من درجة الحرارة, الرطوبة النسبية, التبخر و الهطول المطري بتأخر زمني مقداره ثلاثة أيام (-3:0) إضافةً إلى قيم سابقة للتصريف بتأخر زمني (-3:-1) و مع استخدام 25 عصبون في الطبقة الخفية يعطي أفضل أداء بمتوسط مربع خطأ مقداره 2.8*10^-5, و معامل ارتباط 0.96 لمجموعة البيانات المستخدمة, تمّ التوصل إلى أنّ شبكات Elman تعطي نتائج جيدة في نمذجة العلاقة R_R و بالتالي يمكن اعتبارها بديلاً للطرائق التقليدية في نمذجة العلاقة R_R.