بحث متقدم
ترتيب حسب
فلترة حسب
يشكّل التبخر أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره اعتماداً على الحسابات بعلاقات تجريبية تعتمد على بيانات عناصر المناخ. يهدف البحث إلى بناء أنموذج رياضي لتقدير التبخر الشهري في المنطقة السهلي ة من الساحل السوري، و ذلك باستخدام الشبكات العصبية الصنعيَّة اعتماداً على درجة الحرارة فقط. و إجراء دراسة مقارنة بين نتائج أنموذج الشبكة و نتائج نماذج أخرى معروفة. بُني الأنموذج الرياضي باستخدام NN-tool box إحدى أدوات MATLAB حيث شكلت شبكة عصبية صنعيَّة متعددة الطبقات لخوارزمية الانتشار العكسي للخطأ، و حُددت خوارزمية التعلم الملائمة، و عدد الطبقات الخفية المستخدمة، بالإضافةً إلى عدد العصبونات و نوع دوال التفعيل المستخدمة في كل طبقة. و قد أظهرت النتائج أن الشبكة العصبية الصنعيَّة ذات الهيكلية (1-9-1) تعطي أقل قيمة لمربع متوسط الخطأ لمجموعة التحقق و يساوي 0.0032، مع استخدام دالتي التفعيل Logsigmoid و Linear على الترتيب في الطبقة الخفية و طبقة الإخراج. كما طُوِّر أنموذج المحاكاة للنتائج المستحصلة من الشبكة العصبية الصنعيَّة المقترحة مع نماذج أخرى مثل معادلة إيفانوف و ذلك باستخدام تقانة (Simulink). تبين أن الشبكة العصبية الصنعيَّة المعتمدة على درجة الحرارة فقط تعطي نتائج أكثر دقة من معادلة إيفانوف في تقدير التبخر.
يشكّل التبخر-نتح أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره انطلاقاً من علاقات تجريبية تعتمد على بيانات عناصر المناخ، و تتضمن تلك التقديرات أخطاء متنوّعة بسبب عمليات التقريب. و يهدف البحث إلى تقدي ر دقيق لكمية التبخر الشهري في منطقة صافيتا, و يعتمد البحث على تقانة الشبكة العصبية الصنعية، حيث بُني الأنموذج الرياضي باستخدام Neural Fitting Tool (nftool) إحدى أدوات الماتلاب، و اعتمد الأنموذج على البيانات الشهرية لدرجة حرارة الهواء و الرطوبة النسبية في محطة صافيتا، كما استُخدِمت بيانات التبخر الشهري من حوض التبخر الأميركي صنف A لغرض التحقق من صحة أداء الشبكة، بعد تحويل الأنموذج إلى شكل قالب جاهز باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب. أثبتت نتائج الدراسة أنَّ الشبكة العصبية الصنعيَّة متعددة الطبقات، و ذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقويم التبخر الشهري، اعتماداً على مجموعة البيانات المستخدَمة.
يُعدُّ تقييم موارد المياه السطحية من المدخلات الضرورية لحل قضايا إدارة المياه، و التي تتضمن إيجاد علاقة بين الأمطار و الجريانات السطحية، و تعتبر هذه العلاقة على درجة عالية من التعقيد، حيث أن الأمطار من أهم العوامل التي تؤثر بشكل كبير على جريان الأنها ر، و عملية التنبؤ بهذه الجريانات يجب أن تأخذ هذا العامل بعين الاعتبار، و بكثير من الاهتمام و الدراسة، و تعتبر الشبكات العصبية الصنعية من أهم الطرائق الحديثة من حيث دقة نتائجها في الربط بين هذه العوامل المتعددة و البالغة التعقيد. و من أجل التنبؤ بالجريان اليومي الوارد إلى بحيرة سد 16 تشرين في اللاذقية، موضوع بحثنا، تم تطبيق نماذج مختلفة من الشبكات العصبية الصنعية (ANN)، كانت مدخلاتها تدفقات سابقة للأمطار و الجريانات. قسمت مجموعة البيانات للفترة الممتدة بين عامي (2006-2012) إلى مجموعتين: تدريب و اختبار، و قد تم معالجة البيانات قبل إدخالها إلى الشبكة العصبية باستخدام تقنية تحويل المويجات المتقطع، للتخلص من مشاكل القيم العظمى و القيم الصفرية، حيث حللت السلاسل الزمنية إلى ثلاثة مستويات من الدقة و استخدمت السلاسل الفرعية الناتجة كمدخلات للشبكة العصبية أمامية التغذية التي تعتمد على خوارزمية الانتشار العكسي لتدريبها. أشارت النتائج إلى أن الشبكة العصبية ذات الهيكلية (1-2-6) نموذج Wavelet-ANN، هي الأفضل في تمثيل الظاهرة المدروسة و الأقدر على التنبؤ بالجريان اليومي الوارد إلى بحيرة سد 16 تشرين ليوم واحد قادم، حيث بلغ معامل الارتباط و جذر مربع متوسط الخطأ (R2=0.96، RMSE=1.97m3/sec)، على الترتيب.
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها