بحث متقدم
ترتيب حسب
فلترة حسب
درسنا في هذا البحث تمثيل الأعداد الأولية بالصيغة التربيعية الثنائية الصحيحة معتمدين في ذلك على أهم المفاهيم و النظريات حول الصيغ التربيعية الثنائية الصحيحة وعلى مفهوم الصنف Genus بالإضافة إلى معيار قابلية الحل للمعادلة الديوفانتية .
ناقشنا في هذا البحث مفهوم الدوال المطردة تمامًا و علاقتها ببعض الدوال الخاصة الشهيرة، كدوال (غاما، كيو ميرز، المقطع الاسطواني، غوص الهندسي، ماكدونالد، ويتكر، ميتاك ــــ لفلور المعممة). أوجدنا علاقة الاطراد التام بالتحويلات التكاملية المطردة تمامًا تح ت شروط التقارب، و أيا كانت الدالة غير السالبة كتحويلات (هانكل، لامبيرت، ستيلتجس، لابلاس). كما يتم دراسة انماط أخرى من حالة الدوال المركبة التي تعطى بدلالة سلاسل القوى ذات عوامل غير سالبة وتحويلات تكاملية لدوال غير سالبة مطردة تمامًا و دوال التحويلات التكاملية مع نواة متجانسة من الدرجة الاولى و ايضا دوال لوغاريتميه مطردة تمامًا. في النهاية ناقشنا صف الدوال المطردة تمامًا التي ترتبط بتحويل ستيلتجس المعرف كصف من الدوال المحققة لمتراجحات بعض الدوال الخاصة، و بعض المتراجحات لأجل هذه الدوال الناتجة من الاطراد التام غير المتناقصة او محدبة، لكن أغلبها مطردة تمامًا.
تستبدل دالة الهدف لحل مسائل الأمثليات الأصغرية غالباً بمتتالية من تقريبات الدوال الملساء و من أشهرها غلاف مورو. في السنوات الأخيرة نظمت المسألة باستخدام مسافة بريغمان مسافة غير مترية ( فهي ليست تناظرية و لاتحقق متراجحة المثلث ) كبديل للمسافة المعتادة و بشكل أكثر تحديداً للمسافة التربيعية, و استخدمت بطرق متنوعة في تصميم و تحليل الخوارزميات التكرارية. يهدف البحث إلى دراسة تقارب غلاف مورو-بريغمان و المؤثر الحال في فضاءات غير منتهية البعد حيث أثبتنا التكافؤ بين تقارب موسكو فوق البياني لمتتالية من الدوال و التقارب البسيط لدوال مورو – بريغمان كما درسنا التقارب القوي و الضعيف للمؤثرات الحالة وفق مفهوم مسافة بريغمان.
هَدُفَ هذا البحث إلى إيجاد حلول تامة صريحة ذات موجة منعزلة (soliton wave solutions)، لمعادلة زيلدوفيتش ذات الأمثال التابعة للزمن، باستخدام طريقة دالة الظل الزائدي بتحويل موجي لاخطي في الحالة العامة، و تبين النتائج التي حصلنا عليها أن الحلول التامة تت أثر بالطبيعة اللاخطية للموجة، كما يتبين أن هذه الطريقة فعالة و مناسبة لحل مثل هذا النوع من المعادلات التفاضلية الجزئية غير الخطية التي تعتبر نماذج لمسائل تطبيقية في الفيزياء و الكيمياء و النمو السكاني.
الغاية من هذا البحث هو تطوير و استخدام اثنين من النماذج العقلانية المعممة (Generalized Rational Models) (GRM I,GRM II) التي يمثل كل منهما أنموذجاً رياضياً قابلاً للحل الواقعي, و غير متوفر مع نماذج اخرى, كما سنوضح فائدتها و قابلية تطبيقها على نطاق واس ع, انطلاقاً من مقارنتها بنماذج ملتوية اخرى و تقاربها بشكل جيد.
تقدم هذه المقالة حلاً لمسألة الاهتزازات العرضانية لمنظومات قضبانية من مواد مرنة لزجة لاخطية بوجود العامل البيولوجي. تم بناء المعادلات التفاضلية الحاكمة و إيجاد عبارات تحليلية لحلول هذه المعادلات بحيث توصّف الاهتزازات العرضانية لقضيب رقيق محدود الطول.
إن خوارزميات التدرج المترافق هامة لحل مسائل الأمثليات غـير المقيدة، لذلك نقدم في هذا البحث خوارزمية هجينة لتدرج مترافق تعتمد عمى تحسين معامل الترافق الذي يحقق شرط الانحدار الكافي والتقارب الشامل
قمنا في هذا البحث بتحديد زمرة أتومورفيزم بيان كيلي فوق الزمرة حيث p ¹ q عددان أوليان مع مجموعة اتصال كيفية, و ذلك من خلال بناء حلقة شور المولدة بمجموعة الاتصال , ثم تحديد زمرة أتومورفيزم هذه الحلقة و التي هي زمرة أتومورفيزم هذا البيان. و قد قمنا أيضا بتقديم أمثلة على ذلك في نهاية هذا البحث.
قمنا في هذا البحث بدراسة طريقة القوى التكرارية التي تسمح بحساب تقريب للقيمة الذاتية و كذلك للمتجه الذاتي المرتبط بها. كذلك درسنا طريقة القوى التكرارية العكسية التي تسمح أيضاً بالحصول على تقريب لمتجه ذاتي له قيمة ذاتية تقريبية معروفة. كما تم وصف طري قة QR التي تسمح بحساب كل القيم الذاتية بطريقة فعالة ثم أوجدنا خوارزمية لهذه الطريقة.
سنفرض أن الدالة f دورية و كمولة لوبيغيا , سنقدم في هذا البحث مبرهنتين حول قابلية متساسلة فورييه و مرافقتها بالطريقة المصفوفية التقريبية, و تعمم دراستنا جميع النتائج المعروفة سابقا في هذا المجال.