بحث متقدم
ترتيب حسب
فلترة حسب
يعرض هذا البحث دراسة مرجعية حول استخدام تقنيات الذكاء الصنعي والتنقيب عن المعطيات في أنظمة مكافحة غسيل الأموال. نقارن بين عدة منهجيات متبعة في أوراق بحثية مختلفة بهدف تسليط الضوء على تطبيقات الذكاء الصنعي في حل مشاكل الحياة الواقعية.
مهمة إنشاء صورة عالية الدقة من نظيرتها منخفضة الدقة تُدعى SR (Super-Resolution). تلقت الـ SR اهتماماً كبير ضمن مجتمع الباحثين في مجال الرؤية الحاسوبية، كما أنً لها مجال واسع من التطبيقات[1, 2, 3]، كتحسين دقة الفيديوهات القديمة، تحسين فيديوهات المراقب ة حيث تكون دقة هذه الفيديوهات منخفضة بسبب أحجامها الكبيرة، كما أن لها أهمية كبيرة في مجال التشخيص الطبي حيث أن دقة الكميرات التي تدخل جسم الإنسان منخفضة و يتعثر على الأطباء في كثير من الحالات التشخيص بسبب انخفاض جودة الصور و لها تطبيقات عديدة أيضاً في مجال الصور القادمة من الأقمار الصناعية فهذه الصور كذلك تكون ذات دقة منخفضة في أغلب الأحيان.
نقوم في هذا البحث بدراسة أثر تركيب نموذجين مبنيين باستخدام تقنية الشبكات العصبونية، على زيادة دقة النتيجة المتوقعة في مجال التنبؤ بقيم الأسهم في أسواق الأوراق المالية، حيث يتضمن الحل المقترح نسقين من المعالجة: يجري في النسق الأ ول بناء الشبكتين اللت ين تمثلان النموذجين اللذين نسعى إلى تركيبهما، إذ تتعامل إحدى الشبكتين مع الأسعار السابقة للأسهم و الأخرى مع مؤشرات التحليل التقني، و من ثم نقوم بدمج مخرجات هاتين الشبكتين عن طريق شبكة ثالثة تمثل النسق الثاني من المعالجة.
يقدم البحث طريقة مطورة لكشف مكان نموذج الوجه في الصورة, و ذلك بجمع أكثر من تقنية لتحقيق أفضل نسبة كشف. يبنى نموذج لون بشرة باستخدام الفضاء اللوني (RGB) Red, Green, Blue, لكشف مناطق البشرة و ينتج المناطق المرشحة لتكون الوجه في الصورة. و من خلال تقنية الشبكة العصبونية يتم تدريب مجموعة من صور الوجوه و صور لغير الوجوه (الخلفية) ، بعد إسقاطها على حيز جزئي بواسطة تقنية تحليل المعاملات الأولية بهدف تقليل أبعاد صور التدريب و تقليل الزمن الحسابي. يوجد تعديلين للاستخدام التقليدي للشبكة العصبونية و هما: أولاً, تختبر الشبكة العصبونية مناطق الصورة المرشحة لتكون وجوه فقط, بالنتيجة يتم تقليل حيز البحث. ثانياً, يتم تكييف نافذة مسح الشبكة العصبونية لصورة الدخل, بحيث تعتمد على حجم المنطقة المرشحة لتكون وجه مما يمكن نظام الكشف من كشف الوجوه بحجوم متعددة.
تدرس هذه المقالة منهجية جديدة لتحديد وجود العطل من عدمه، و تصنيف الاعطال في الوقت الحقيقي بالاعتماد على الشبكات العصبونية في خطوط نقل القدرة الكهربائية. تعتمد هذه الخوارزمية على استخدام إشارات الجهود، و التيارات بوصفها يمثل دخل للشبكات العصبونية بعد تقطيعها بتردد تقطيع 1 KHz، و بدون استخدام نافذة بيانات متحركة، حيث ان إشارات الدخل تعالج لحظياً على شكل سلسلة من البيانات المتلاحقة. يعتمد النموذج على ثلاث شبكات عصبونية يعالج كل منها بيانات طور من الأطوار بالإضافة الى شبكة عصبونية رابعة للجهد و التيار الصفريين. يتمكن هذا النظام من تحديد نوع العطل خلال زمن لا يتجاوز الـ 5 ميلي ثانية. تتطلب أنظمة القدرة الحديثة تقنية دقيقة و سريعة للمعالجة في الوقت الحقيقي. تبين دراسات المحاكاة أن التقنية المقترحة قادرة على تمييز حالات العطل المختلفة بشكل دقيق جداً، و قد نجحت هذه التقنية في تحديد جميع أنواع الأعطال تحت شروط النظام المختلفة، بالتالي فإنها دقيقة بنسبة 100% و مناسبة للتطبيق في الزمن الحقيقي.