بحث متقدم
ترتيب حسب
فلترة حسب
في هذه البحث تم تصميم شبكة عصبية اصطناعية تعتمد على خوارزمية الانتشار الخلفي للخطأ (BPNN) لتشخيص أورام الثدي و كذلك تصميم مصنف للتشخيص باستخدام نظام الاستدلال العصبي الضبابي المتكيف (ANFIS) و قد اعتمدت كلا الدراستين على السمات البنيوية للخزع الموجودة في قاعدة البيانات لصور الثدي لجامعة ويسكونسون في الولايات المتحدة الأميركية” Wisconson Brest Cancer dataset“ في النهاية تم اجراء مقارنة بين الدراستين من أجل التشخيص الحميد و الخبيث للكتل السرطانية لسرطان الثدي حيث حصلت الدراسة الاولى BPNN على دقة %95.95 بينما الدراسة الثانية ANFIS حصلت على دقة 91.9% و هذه النتائج تعتبر هامة جدا و مساعدة إذا ما قورنت بالأبحاث المعتمدة على السمات الشكلية المأخوذة من الصور لأجهزة متنوعة كالماموغراف و الرنين المغناطيسي.
طُبق مفهوم إعادة استخدام التردد بشكل ناجح في أنظمة الاتصالات الخليوية الحديثة، من أجل زيادة سعة النظام، من الممكن إحداث تحسُّن آخر في السعة بتطبيق المصفوفات المتكيفة في المحطة الأساسية، يستخدم من أجل ملاحقة المستخدمين المرغوبين خوارزميات إيجاد الاتجا ه من أجل تحديد أماكنهم وفقاً لحركتهم ضمن الخلايا أو فيمابينها. اقترح مؤخراً خوارزميات إيجاد الاتجاه المعتمدة على الشبكات العصبونية وذلك لإيجاد اتجاه المنبع عن طريق تقييم أداء الشبكات العصبونية بمقارنة توقعاتها وانحرافها المعياري ومتوسط الخطأ التربيعي بين قيمها المتوقعة وبين ماتم قياسه، هذا البحث يعتمد هذا المنحى حيث يتم مقارنة خرج الهوائيات المصفوفية من حيث المطال، ثم اختيار الإشارة ذات المطال الأفضل وإظهارها على الخرج النهائي للنظام.