بحث متقدم
ترتيب حسب
فلترة حسب
حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
في هذه البحث تم تصميم شبكة عصبية اصطناعية تعتمد على خوارزمية الانتشار الخلفي للخطأ (BPNN) لتشخيص أورام الثدي و كذلك تصميم مصنف للتشخيص باستخدام نظام الاستدلال العصبي الضبابي المتكيف (ANFIS) و قد اعتمدت كلا الدراستين على السمات البنيوية للخزع الموجودة في قاعدة البيانات لصور الثدي لجامعة ويسكونسون في الولايات المتحدة الأميركية” Wisconson Brest Cancer dataset“ في النهاية تم اجراء مقارنة بين الدراستين من أجل التشخيص الحميد و الخبيث للكتل السرطانية لسرطان الثدي حيث حصلت الدراسة الاولى BPNN على دقة %95.95 بينما الدراسة الثانية ANFIS حصلت على دقة 91.9% و هذه النتائج تعتبر هامة جدا و مساعدة إذا ما قورنت بالأبحاث المعتمدة على السمات الشكلية المأخوذة من الصور لأجهزة متنوعة كالماموغراف و الرنين المغناطيسي.
تعتبر أنظمة التعليق من أهم المكونات في المركبات الحديثة كما أنها تعد أهم عوامل الراحة و الأمان فيها لذلك كان لابد من تأمين متحكم يضمن التفاعل الكامل بين مكونات نظام التعليق و يساعد في اتخاذ القرارات الدقيقة في الوقت المناسب, يقترح البحث تصميم متحكم ب استخدام نظام الاستدلال العصبي الضبابي المكيف الموسع (EANFIS) و استخدامه كوحدة اتخاذ قرار في نظام التعليق لنموذج ربع المركبة بغاية المحافظة على ثبات المركبة على الطرقات لتأمين راحة الركاب حيث يقوم بتحقيق دقة في اتخاذ القرار للمساهمة في تخفيض الاهتزازات و امتصاص الصدمات الناتجة عن عدم استواء الطريق و بالتالي يمنع وصولها إلى مقصورة القيادة و يؤمن الثبات و التماسك المطلوب تم تطبيق المتحكم على نموذج ربع المركبة و دراسة استجابة النموذج في حال حدوث اضطرابات مختلفة و مقارنة أداء المتحكم مع متحكم يعتمد على نظام الاستدلال الضبابي و مع استجابة النموذج الرياضي ذو الحلقة المفتوحة بوجود اضطرابات دخل مختلفة و قد أظهر المتحكم تفوقاً في الأداء من حيث تخفيض الإزاحات و سرعة الاهتزاز و تسارعه.
التعرف على الأشخاص باستخدام بصمة اليد يلقى الكثير من الاهتمام بالتزامن مع الحاجة إلى تقنيات جديدة ترفع من مستوى الأمان. في هذه الدراسة تم اقتراح تقنية جديدة للتعرف على الأشخاص عن طريق بصمة اليد و ذلك من خلال استخلاص السمات من معاملات التحويل المويجي لصور راحة اليد بالاعتماد على فكرة التقاطعات الصفرية (عدد مرات التقاطع مع القيمة صفر). حيث تم إيجاد التحويل المويجي عند المستوى الرابع لكامل صورة اليد و الذي نتج عنه أربع مصفوفات، ثلاث مصفوفات تفاصيل (أفقية – شاقولية- قطرية) و مصفوفة تقريبات و تم الاعتماد على مصفوفات التفاصيل دون التقريبات لأن المعلومات التي نحتاجها (خطوط و منحنيات اليد) محتواة في مصفوفات التفاصيل. بعد ذلك تم استخلاص ستة عشر معامل (سمة ) من كل مصفوفة تفاصيل و ترتيب هذه السمات ضمن شعاع واحد ليتشكل شعاع السمات المستخلص من كل عينة من عينات اليد و المكون من ثمان و أربعين (48) سمة و الذي تم استخدامه كدخل للشبكة العصبونية المستخدمة. تم خلال هذه الدراسة بناء قاعدة بيانات مكونة من 400 صورة لراحة اليد عائدة لأربعين شخص بمعدل 10 صور لكل شخص. حيث أظهرت الاختبارات العملية أن النظام المصمم نجح في التعرف بمعدل 91.36%.
قمنا من خلال هذا البحث ببناء نظام خبير يدعى Transformer Fault Detection و اختصارا Exformer مهمته مساعدة المهندسين و الفنيين في إكتشاف و تشخيص أعطال محولات القدرة الكهربائية الزيتية المعطلة أو المشتبه بأنها معطلة قبل خروجها من الخدمة, إضافة إلى إس تخدام المنطق العائم في الحالات التي تكون فيها المعطيات غامضة أو مبهمة مما تطلب كتابة قواعد عائمة لاستخدامها في قاعدة المعرفة للنظام الخبير, كما قمنا بوضع القواعد اللازمة لبناء و تدريب شبكة عصبونية صنعية لتحقيق نفس الغاية في كشف أعطال المحولات و المقارنة مع تقنيات الذكاء الصنعي الأخرى.
نقوم في هذا البحث بدراسة أثر تركيب نموذجين مبنيين باستخدام تقنية الشبكات العصبونية، على زيادة دقة النتيجة المتوقعة في مجال التنبؤ بقيم الأسهم في أسواق الأوراق المالية، حيث يتضمن الحل المقترح نسقين من المعالجة: يجري في النسق الأ ول بناء الشبكتين اللت ين تمثلان النموذجين اللذين نسعى إلى تركيبهما، إذ تتعامل إحدى الشبكتين مع الأسعار السابقة للأسهم و الأخرى مع مؤشرات التحليل التقني، و من ثم نقوم بدمج مخرجات هاتين الشبكتين عن طريق شبكة ثالثة تمثل النسق الثاني من المعالجة.
يقدم البحث طريقة مطورة لكشف مكان نموذج الوجه في الصورة, و ذلك بجمع أكثر من تقنية لتحقيق أفضل نسبة كشف. يبنى نموذج لون بشرة باستخدام الفضاء اللوني (RGB) Red, Green, Blue, لكشف مناطق البشرة و ينتج المناطق المرشحة لتكون الوجه في الصورة. و من خلال تقنية الشبكة العصبونية يتم تدريب مجموعة من صور الوجوه و صور لغير الوجوه (الخلفية) ، بعد إسقاطها على حيز جزئي بواسطة تقنية تحليل المعاملات الأولية بهدف تقليل أبعاد صور التدريب و تقليل الزمن الحسابي. يوجد تعديلين للاستخدام التقليدي للشبكة العصبونية و هما: أولاً, تختبر الشبكة العصبونية مناطق الصورة المرشحة لتكون وجوه فقط, بالنتيجة يتم تقليل حيز البحث. ثانياً, يتم تكييف نافذة مسح الشبكة العصبونية لصورة الدخل, بحيث تعتمد على حجم المنطقة المرشحة لتكون وجه مما يمكن نظام الكشف من كشف الوجوه بحجوم متعددة.
يعتمد البحث المقدم على تقديم طريقة جديدة لاستحصال إشارة قلب الجنين و ذلك باستخدام إشارة وحيدة لقلب الأم يتم استحصالها من منطقة الصدر و اشارة أو أكثر يتم استحصالها من منطقة البطن تحتوي على إشارة قلب الأم في منطقة البطن و إشارة قلب الجنين و العديد من مكونات الضجيج المضاف.
يقدم البحث تصميماً لنظام تفقد آلي للطلبة، يقوم النظام بالتقاط صورة للطالب ثم استخلاص ملامح الوجه الأساسية، تم تدريب الشبكة باستخدام خوارزمية الانتشار العكسي، إذ تم توليد قاعدة بيانات تدريبية لكل طالب، مكونة من 15 عينة تدريبية له لمرة واحدة في بداية ا لفصل الدراسي، كل عينة تحتوي تعابير الوجه اللازمة للتعرف على طالب، تُدرب الشبكة العصبونية على قاعدة بيانات الطلبة من أجل الحصول على شبكة عصبونية مدربة قادرة على التعرف على طلاب كل فئة بالاعتماد على ملامحهم، وبالتالي معرفة من حضر الجلسة ممن لم يحضر، تم تزويد النظام المصمم لهذا الغرض بالشبكة المدربة، يقدم النظام إمكانية إجراء التفقد الآلي للطلاب حسب فحوى الدراسة مع التنبيه في حال وجود صورة لطالب لا ينتمي لنفس المجموعة.