بحث متقدم
ترتيب حسب
فلترة حسب
تعتبر الأمطار من الظواهر غير الخطية المعقدة، و التي تتطلب النمذجة الرياضية غير الخطية لغرض التنبؤ بها. هذه الدراسة تقارن أداء التنبؤ بالأمطار ليوم مقدماً، حيث وضعت اثنين من نماذج الشبكات العصبونية (ذات التغذية الأمامية) للتنبؤ بأمطار يومية متتالية لثلاثة أشهر (كانون الأول، كانون الثاني، شباط) و هذه النماذج هي: نموذج الشبكات العصبية الاصطناعية التقليدية (ANN) و نموذج عصبوني مع تقنية التحويل المويجي وفق (wavelet- neural) طريقتين مختلفتين لبناء النماذج و باستخدام نوعين من المويجات من عائلة دوبغنز (db2, db5) و من أجل المقارنة بين أداء النماذج في قدرتها على التنبؤ بالأمطار على المدى القصير (ليوم و يومين و ثلاثة أيام مقدماً) للأشهر الأخيرة من فترة الدراسة، فقد استخدمت بعض المعايير الإحصائية، التي اشتملت على جذر متوسط مربعات الأخطاء (RMSE) و معامل الارتباط (R).
التعرف على الأشخاص باستخدام بصمة اليد يلقى الكثير من الاهتمام بالتزامن مع الحاجة إلى تقنيات جديدة ترفع من مستوى الأمان. في هذه الدراسة تم اقتراح تقنية جديدة للتعرف على الأشخاص عن طريق بصمة اليد و ذلك من خلال استخلاص السمات من معاملات التحويل المويجي لصور راحة اليد بالاعتماد على فكرة التقاطعات الصفرية (عدد مرات التقاطع مع القيمة صفر). حيث تم إيجاد التحويل المويجي عند المستوى الرابع لكامل صورة اليد و الذي نتج عنه أربع مصفوفات، ثلاث مصفوفات تفاصيل (أفقية – شاقولية- قطرية) و مصفوفة تقريبات و تم الاعتماد على مصفوفات التفاصيل دون التقريبات لأن المعلومات التي نحتاجها (خطوط و منحنيات اليد) محتواة في مصفوفات التفاصيل. بعد ذلك تم استخلاص ستة عشر معامل (سمة ) من كل مصفوفة تفاصيل و ترتيب هذه السمات ضمن شعاع واحد ليتشكل شعاع السمات المستخلص من كل عينة من عينات اليد و المكون من ثمان و أربعين (48) سمة و الذي تم استخدامه كدخل للشبكة العصبونية المستخدمة. تم خلال هذه الدراسة بناء قاعدة بيانات مكونة من 400 صورة لراحة اليد عائدة لأربعين شخص بمعدل 10 صور لكل شخص. حيث أظهرت الاختبارات العملية أن النظام المصمم نجح في التعرف بمعدل 91.36%.