بحث متقدم
ترتيب حسب
فلترة حسب
تهدف أنظمة تعرف الكلام أليا بشكل عام إلى كتابة ما يقال. تتالف أنظمة تعرف الكلام المستمر آليا في أحدث ما توصل إليه العلم في هذا المجال من أربع مكونات أساسية: معالجة الإشارة، النمذجة الصوتية, النمذجة اللغوية، ومحرك البحث. أما تعرف الكلمات المنفصلة فلا يحتوي على النمذجة اللغوية. التي تقوم بربط الكلمات لتشكيل جملة مفهومة.
تعد أنظمة التعرف السمعية البصرية التي تعتمد على صوت و حركة شفاه المتكلم من أهم أنظمة التعرف على الكلام. و قد تم تطوير العديد من التقنيات المختلفة من حيث الطرائق المستخدمة في استخراج السمات و طرائق التصنيف. يقترح البحث إنشاء نظام للتعرف على الكلمات المعزولة بالاعتماد السمات السمعية المستخرجة من فيديوهات منطوقة لكلمات باللغة العربية في بيئة خالية من الضجيج، و من ثم إضافة مكون الطاقة و المشتقات التفاضلية في مرحلة استخراج السمات لخوارزمية معاملات تردد الميل.
تعد تقنيات التعرف على الكلام من أهم التقنيات الحديثة التي دخلت بقوة في مجالات الحياة المختلفة سواء الطبية أو الأمنية أو الصناعية. و بناءً عليه تم تطوير العديد من الأنظمة المعتمدة على طرق مختلفة في استخلاص السمات و التصنيف. في هذا البحث تم إنشاء ثلاث ة أنظمة للتعرف على الكلام، تختلف عن بعضها البعض بالطرق المستخدمة في مرحلة استخلاص السمات، حيث استخدم النظام الأول خوارزمية MFCC بينما استخدم النظام الثاني خوارزمية LPCC أما النظام الثالث فاستخدم خوارزمية PLP. تشترك هذه الأنظمة بطريقة التصنيف حيث استخدمت خوارزمية الـHMM كمصنف. في البداية تم دراسة و تقييم أداء عملية التعرف على الكلام للأنظمة الثلاثة السابقة المقترحة منفردةً. بعد ذلك تم تطبيق خوارزمية الجمع على كل زوج من الأنظمة المدروسة و ذلك لدراسة أثر خوارزمية الجمع في تحسين التعرف على الكلام. تم اعتماد نوعين من الأخطاء، الأخطاء التزامنية (simultaneous errors) و الأخطاء الاعتمادية ((dependent errors، كوحدة مقارنة لدراسة فعالية خوارزمية الجمع في تحسين أداء عملية التعرف على الكلام. يتبين من نتائج المقارنة أن أفضل نسبة تعرف على الكلام تم الحصول عليها في حالة جمع الخوارزميتان MFCC و PLP حيث تم الحصول على معدل تعرف 93.4%.
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها