ترغب بنشر مسار تعليمي؟ اضغط هنا

عملت الحداثة الصلبة على جعل الإنسان هدفاً نهائياً للتحرر فأعلت من شأن العقل، وأعلنت ثورتها من أجل التجديد والتحديث لمختلف جوانب الحياة، كما أنها أعلنت القطيعة مع الماضي. ولم يقتصر تأثيرها على تصدير منتجات الثورة التكنولوجية فحسب، بل صدّرت كذلك محاولا ت تفكيك لبعض المعتقدات الدينية والميتافيزيقية، والتطورات المذهلة في الفيزياء الحديثة، وصعود الأمة /الدولة باعتبارها النموذج الوحيد المهيمن للحكم والتي جعلت الولادة أساس سيادتها. لقد تزامن نشوء الدولة الحديثة مع ظهور أشخاص مشردين بلا دولة، كما ظهرت فكرة العري الاجتماعي، وبُعث من جديد قانون الإنسان المستباح الحرام، ولكن مع الحداثة السائلة كما يرى الفيلسوف البولندي زيغمونت باومان Zygmunt Bauman تحولت العلاقة الغرامية على مدى قرون بين الأمة والدولة إلى معاشرة تحل محل العلاقة الزوجية المقدسة، لدخولهم إلى العالم الحر في منظمة التعاون الاقتصادي والتنمية.
لتخفيف الجهود البشرية من الحصول على شروح واسعة النطاق، تهدف أساليب استخراج العلاقات شبه الإشراف إلى الاستفادة من البيانات غير المسبقة بالإضافة إلى التعلم من عينات محدودة. تعاني أساليب التدريب الذاتي الحالية من مشكلة الانجراف التدريجي، حيث يتم دمج تسم يات زائفة صاخبة على البيانات غير المسبقة أثناء التدريب. لتخفيف الضوضاء في الملصقات الزائفة، نقترح طريقة تسمى METASRE، حيث تقوم شبكة توليد علامات العلاقة بإنشاء تقييم دقيق للجودة على التسميات الزائفة من خلال (META) التعلم من المحاولات الناجحة والفاشية على شبكة تصنيف العلاقة كهدف META إضافي. لتقليل تأثير الملصقات الزائفة الصاخبة، يعتمد METASRE مخطط استغلال ومستودعات زائفة تقيم جودة تسمية الزائفة على العينات غير المستمرة وتستغل فقط تسميات الزائفة عالية الجودة في أزياء التدريب الذاتي لزيادة العينات المصنفة بشكل تدريجي لكل من المتانة والدقة وبعد النتائج التجريبية على مجموعة بيانات عامة تثبت فعالية النهج المقترح.
تهدف مهمة التحقق من الحقائق القائمة على الطاولة إلى التحقق مما إذا كان البيان المحدد مدعوم من الجدول شبه المنظم المحدد. يلعب المنطق الرمزي مع العمليات المنطقية دورا حاسما في هذه المهمة. الأساليب الحالية الاستفادة من البرامج التي تحتوي على معلومات منط قية غنية لتعزيز عملية التحقق. ومع ذلك، نظرا لعدم وجود إشارات خاضعة للإشراف بالكامل في عملية توليد البرنامج، يمكن استخلاص البرامج الزائفة وعملها، مما يؤدي إلى عدم قدرة النموذج على العمليات المنطقية المفيدة. لمعالجة المشكلات المذكورة أعلاه، في هذا العمل، نقوم بصياغة مهمة التحقق من الحقائق القائمة على الطاولة كإطار لاسترجاع الأدلة والتفكير، حيث اقترح شبكة التحقق من الأدلة على مستوى المنطق وشبكة التحقق القائمة على الرسم البياني (LERGV). على وجه التحديد، نقوم أولا باسترجئة الأدلة التي تشبه البرامج على مستوى المنطق من الجدول المعطى والبيان كدليل تكميلي على الطاولة. بعد ذلك، نقوم بإنشاء رسم بياني لمستوى منطقي لالتقاط العلاقات المنطقية بين الكيانات والوظائف في الأدلة المستردة، وتصميم شبكة التحقق القائمة على الرسم البياني لإجراء المنطق المستندة إلى الرسم البياني على مستوى المنطق بناء على الرسم البياني الذي تم إنشاؤه لتصنيف النهائي علاقة استقامة. النتائج التجريبية على Tabract Tabract القياسي على نطاق واسع تظهر فعالية النهج المقترح.
في السنوات الأخيرة، أثبتت نماذج اللغة المدربة مسبقا (PLM) مثل بيرت فعالة للغاية في مهام NLP المتنوعة مثل استخراج المعلومات وتحليل المعنويات والرد على الأسئلة.تدربت مع نص المجال العام الضخم، هذه النماذج اللغوية المدربة مسبقا تلتقط معلومات النحوية والد لية والجلطة الغنية في النص.ومع ذلك، نظرا للاختلافات بين نص مجال عام ومحدد (E.G.، Wikipedia مقابل ملاحظات عيادة)، قد لا تكون هذه النماذج مثالية للمهام الخاصة بالمجال (على سبيل المثال، استخراج العلاقات السريرية).علاوة على ذلك، قد يتطلب الأمر معرفة طبية إضافية لفهم النص السريري بشكل صحيح.لحل هذه القضايا، في هذا البحث، نقوم بإجراء فحص شامل للتقنيات المختلفة لإضافة المعرفة الطبية إلى نموذج برت مدرب مسبقا لاستخراج العلاقات السريرية.تتفوق أفضل طرازنا على مجموعة بيانات استخراج الحالة الإكلينيكية من أحدث طراز I2B2 / VA 2010.
تهدف الكشف عن العلاقات متعددة القفزات في أسئلة المعرفة الإجابة (KBQA) إلى استرجاع مسار العلاقة بدءا من كيان الموضوع إلى عقدة الإجابة بناء على سؤال معين، حيث قد يشتمل مسار العلاقة على علاقات متعددة. تعامل معظم الأساليب الموجودة بمثابة مشكلة في تعلم ال علامة الفردية مع تجاهل حقيقة أنه بالنسبة لبعض الأسئلة المعقدة، توجد مسارات علاقة صحيحة متعددة في قواعد المعرفة. لذلك، في هذه الورقة، يعتبر اكتشاف العلاقة المتعددة القفز مشكلة في التعلم متعدد العلامات. ومع ذلك، فإن إجراء اكتشاف علاقة متعددة الأقفز متعددة الملصقات يمثل تحديا لأن أعداد كل من الملصقات والقفزات غير معروفة. لمعالجة هذا التحدي، يتم صياغة الكشف المتعدد الملصقات متعددة القفز كهجوم توليد التسلسل. يقترح نموذج توليد علاقات العلاقة بين العلاقة على حل المشكلة بطريقة نهاية إلى نهاية. تظهر النتائج التجريبية فعالية الطريقة المقترحة للكشف عن العلاقة و KBQA.
يعاني العمل السابق على علاقة Crosslingual واستخراج الأحداث (REE) من قضية التحيز أحادي الأحادي بسبب تدريب النماذج على بيانات اللغة المصدر فقط. تتمثل نهج التغلب على هذه المسألة في استخدام البيانات غير المستهلكة في اللغة المستهدفة لمساعدة محاذاة تمثيلات crosslingual، أي عن طريق خداع تمييز لغة. ومع ذلك، نظرا لأن هذا النهج غير بشرط على معلومات الفصل، فإن مثال لغوي مستهدف يمكن أن يتماشى بشكل غير صحيح إلى مثال لغة مصدر لفئة مختلفة. لمعالجة هذه المشكلة، نقترح طريقة محاذاة Crosslingual الجديدة التي ترفد معلومات الفئة من مهام REE لتعلم التمثيل. على وجه الخصوص، نقترح تعلم نسختين من ناقلات التمثيل لكل فصل في مهمة ري بناء على أمثلة اللغة أو الهدف المستهدف. سيتم بعد ذلك محاذاة ناقلات التمثيل للفصول المقابلة لتحقيق محاذاة علم الفئة للتمثيلات crosslingual. بالإضافة إلى ذلك، نقترح مواصلة مواءمة مقالات التمثيل لفئات الكلمات العالمية للألوج (أي أجزاء من العلاقات بين الكلام والاعتماد). على هذا النحو، يتم تقديم آلية تصفية جديدة لتسهيل تعلم تمثيلات فئة Word من تمثيلات السياق على نصوص الإدخال بناء على التعلم المشددي. نقوم بإجراء تجارب متشددة واسعة النطاق مع اللغة الإنجليزية والصينية والعربية على مهام ري. توضح النتائج فوائد الطريقة المقترحة التي تقدم بشكل كبير الأداء الحديث في هذه الإعدادات.
تهدف استخراج العلاقات الزمنية الفائقة (FINETEMPRL) إلى الاعتراف بتذكير فترات الزمن والجدول الزمني في النص.جزء مفقود في نماذج التعلم العميقة الحالية ل Finetemprel هو فشلهم في استغلال الهياكل النحوية لجمل المدخلات لإثراء ناقلات التمثيل.في هذا العمل، نق ترح ملء هذه الفجوة من خلال إدخال طرق جديدة لإدماج الهياكل النحوية في نماذج التعلم العميق ل Finetemprel.يركز النموذج المقترح على نوعين من المعلومات النحوية من أشجار التبعية، أي عشرات الأهمية التي تستند إلى بناء الجملة لتعلم تمثيل الكلمات والاتصالات النحوية لتحديد كلمات السياق الهامة لذكر الحدث.نقدم أيضا تقنيات جديدة لتسهيل نقل المعرفة بين المهام الفرعية في Finetempr، مما يؤدي إلى نموذج جديد مع الأداء الحديث لهذه المهمة.
تهدف استخراج الزوج للحجة (القرد) إلى استخراج أزواج الحجة التفاعلية من ممرتين من المناقشة. درس العمل السابق هذه المهمة في سياق مراجعة الأقران و Rebuttal، وتحللها في مهمة وضع علامة تسلسل ومهمة تصنيف علاقات الجملة. ومع ذلك، على الرغم من الأداء الواعد، ف إن هذا النهج يحصل على أزواج الحجة ضمنيا من قبل المهامتين المتحلين، يفتقر إلى نمذجة صراحة لتفاعلات مستوى الوسيطة بين أزواج الحجة. في هذه الورقة، نقوم بمعالجة مهمة القرد من خلال إطار توجيه متبادل، والتي يمكن أن تستخدم معلومات حجة في مقطع واحد لتوجيه تحديد الحجج التي يمكن أن تشكل أزواج معها في مقطع آخر. وبهذه الطريقة، يمكن لمركزين توجه بعضهما البعض بشكل متبادل في عملية القرد. علاوة على ذلك، نقترح رسم بياني علاقة بين الجملة إلى النموذج بشكل فعال العلاقات بين الجملتين وبالتالي يسهل استخراج أزواج الحجة. يمكن أن تمثل طريقةنا المقترحة بشكل أفضل دلالات المستوى الكلي على مستوى الوسيطة، وبالتالي التقاط صراحة الارتباطات المعقدة بين أزواج الحجة. تظهر النتائج التجريبية أن نهجنا تتفوق بشكل كبير على النموذج الحالي للحالة الحالية.
استخراج العلاقات غير المدعومة من قبل أزواج كيان التجمع التي لها نفس العلاقات في النص. تقوم بعض الأساليب المتنوعة (VAE) المتنوعة (VAE) بتدريب نموذج استخراج العلاقة كترفيه يولد تصنيفات العلاقة. يتم تدريب وحدة فك الترميز جنبا إلى جنب مع التشفير لإعادة ب ناء إدخال التشفير بناء على تصنيفات العلاقة التي يتم إنشاؤها المشن. هذه التصنيفات هي متغير كامن حتى يطلب منهم اتباع توزيع مسبق محدد مسبقا يؤدي إلى تدريب غير مستقر. نقترح تقنية استخراج العلاقات التي تعتمد عليها VAE تقوم بتغيير هذا القيد باستخدام التصنيفات كمتغير متوسط ​​بدلا من متغير كامن. على وجه التحديد، تكون التصنيفات مشروطة بإدخال الجملة، في حين أن المتغير الكامن مشروط على كل من التصنيفات وإدخال الجملة. يتيح ذلك نموذجنا لتوصيل وحدة فك الترميز مع التشفير دون وضع قيود على توزيع التصنيف؛ الذي يحسن استقرار التدريب. يتم تقييم نهجنا على بيانات DataSet NYT وتفوق الطرق الحديثة.
للعثور على تضمين مناسب لرجل المعرفة يظل تحديا كبيرا في الوقت الحاضر. باستخدام أساليب شرطة المعرفة السابقة، عادة ما يتم تمثيل كل كيان في رسم بياني المعرفة كجاغر K- الأبعاد. كما نعلم، يمكن التعبير عن تحول أفيني في شكل مضاعفة مصفوفة تليها ناقلات الترجمة . في هذه الورقة، نستفيد أولا مجموعة من التحولات الفوضى المتعلقة بكل علاقة بتشغيل على ناقلات الكيان، ثم يتم استخدام هذه المتجهات المحولة لأداء التضمين مع الأساليب السابقة. تتمثل الميزة الرئيسية لاستخدام تحويلات Affine خصائص هندسة جيدة مع إمكانية الترجمة الشفوية. توضح نتائجنا التجريبية أن التصميم الفديهي المقترح مع تحويلات تفكيك يوفر زيادة ذات دلالة إحصائية في الأداء مع إضافة بعض خطوات معالجة إضافية أو إضافة عدد محدود من المتغيرات الإضافية. اتخاذ Transe كمثال، فإننا نوظف تحويل المقياس (الحالة الخاصة لتحويل أفيركي)، ويعرض فقط متغيرات إضافية لكل علاقة. من المستغرب، فإنه ينطبق على التدوير إلى حد ما على مجموعات البيانات المختلفة. نحن نقدم أيضا تحويلات تفكيكية إلى التدوير والضيق والمعقدة، على التوالي، وكل واحد يتفوق على طريقته الأصلية.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا