على الرغم من أن المراجع الشمية تلعب دورا حاسما في ذاكرتنا الثقافية، إلا أن عددا قليلا فقط في NLP حاولت التقاطها من منظور حسابي. حاليا، والتحدي الرئيسي ليس الكثير من تطوير المكونات التكنولوجية لاستخراج المعلومات الشمية، بالنظر إلى التقدم الأخير في الم
عالجة الدلالية وفهم اللغة الطبيعية، بل عدم وجود إطار نظري لالتقاط هذه المعلومات من وجهة نظر لغوية، ك الخطوة الأولية نحو تطوير النظم الآلية. لذلك، في هذا العمل، نقدم الإرشادات التوضيحية، التي تم تطويرها بمساعدة علماء التاريخ وخبراء المجال، تهدف إلى التقاط جميع العناصر ذات الصلة المشاركة في حالات أو أحداث شمية موضحة في النصوص. وقد استوحاد هذه المبادئ التوجيهية من شرح Framenet، لكنها خضعت لبعض التكيفات، والتي يتم تفصيلها في هذه الورقة. علاوة على ذلك، نقدم دراسة حالة فيما يتعلق بشراحف الحالات الشمية في كتابات السفر التاريخية الإنجليزية التي تصف الرحلات إلى إيطاليا. يظهر تحليلا لأكثر الحشو الدور الأكثر شيوعا أن الأوصاف الشمية تتعلق ببعض المجالات النموذجية مثل الدين والطعام والطبيعة والماضي القديم والمرافق الصحية الفقراء، وكل ذلك يدعم إنشاء صور نمطية مرتبطة بإيطاليا. من ناحية أخرى، فإن المشاعر الإيجابية الناجمة عن الروائح سائدة، وتساهم في تأطير السفر إلى إيطاليا كخبرة مثيرة تنطوي على جميع الحواس.
يصف استخراج المعلومات عبر اللغات الصفرية (IE) بناء نموذج IE لبعض اللغة المستهدفة، بالنظر إلى التعليقات التوضيحية القائمة حصريا في لغة أخرى، عادة باللغة الإنجليزية. في حين أن تقدم اللوائح المتعددة اللغات المحددة مسبقا يشير إلى تفاؤل سهلة للقطار على ال
لغة الإنجليزية، وتشغيل أي لغة ""، نجد من خلال استكشاف شامل وتمديد التقنيات التي تقودها مجموعة من الأساليب، الجديدة القديمة، إلى أداء أفضل من أي استراتيجية واحدة عبر اللغات على وجه الخصوص. نستكشف التقنيات بما في ذلك إسقاط البيانات والتدريب الذاتي، وكيف تأثير المشفرات المختلفة مسبقا تأثيرها. نستخدم English-to-businal IE مثلي الأولي، مما يدل على أداء قوي في هذا الإعداد لاستخراج الأحداث، والتعرف على الكيان المسمى، ووضع علامات جزء من الكلام، وتحليل التبعية. ثم قم بتطبيق إسقاط البيانات والتدريب الذاتي على ثلاثة مهام عبر ثمانية لغات مستهدفة. نظرا لعدم وجود مجموعة واحدة من التقنيات الأفضل عبر جميع المهام، فإننا نشجع الممارسين على استكشاف تكوينات مختلفة للتقنيات الموضحة في هذا العمل عند السعي لتحسين التدريب على الصفر.
استخراج المعلومات الزمنية أمر بالغ الأهمية لمعالجة النص المتعلق بالصحة. إن استخراج المعلومات الزمنية هي مهمة صعبة للنماذج اللغوية لأنها تتطلب معالجة النصوص والأرقام. علاوة على ذلك، فإن التحدي الأساسي هو كيفية الحصول على مجموعة بيانات تدريبية واسعة ال
نطاق. لمعالجة هذا، نقترح خوارزمية توليد البيانات الاصطناعية. أيضا، نقترح نموذج استخراج المعلومات الزمني متعدد المهام الجديد والتحقيق فيما إذا كان التعلم متعدد المهام يمكن أن يسهم في تحسين الأداء من خلال استغلال إشارات تدريبية إضافية مع بيانات التدريب الحالية. بالنسبة للتجارب، جمعنا مجموعة بيانات مخصصة تحتوي على نصوص غير منظم مع المعلومات الزمنية للأنشطة المتعلقة بالنوم. تظهر النتائج التجريبية أن استخدام البيانات الاصطناعية يمكن أن تحسن الأداء عندما يكون عامل التكبير 3. النتائج تظهر أيضا أنه عند استخدام التعلم متعدد المهام مع كمية مناسبة من البيانات الاصطناعية، يمكن أن يتحسن الأداء بشكل كبير من 82. إلى 88.6 ومن 88.6 ومن 83.9 إلى 91.9 فيما يتعلق بعشرات المطابقة الدقيقة والمتوسط الكلي من التوقعات في الوقت المحدد، على التوالي.
مع ظهور Advent of Store argeddings، زادت الاهتمام تجاه نهج التصنيف العصبي لاسترجاع المعلومات بشكل كبير. ومع ذلك، ظلت جائبتان مهمان إلى حد كبير: I) عادة ما تتكون الاستعلامات من عدد قليل من الكلمات الرئيسية فقط، مما يزيد من الغموض ويجعل سياقه أكثر صعوب
ة، والثاني) أداء التصنيف العصبي على المستندات غير الإنجليزية لا يزال مرهقا بسبب نقص مجموعات البيانات المسمى. في هذه الورقة، نقدم سيدي (استرجاع المعلومات المحسنة) للتخفيف من المشكلتين من خلال الاستفادة من معلومات معنى النص. يكمن في جوهر نهجنا آلية توسيع عملية استعلام متعددة اللغات الرواية بناء على غزانة إحساس النصوص التي توفر تعريفات المعنى بأنها معلومات دلالية إضافية للاستعلام. الأهم من ذلك، نحن نستخدم الحواس كجسر عبر اللغات، وبالتالي السماح لطرازنا بأداء أفضل بكثير من بدائلها الخاضعة للإشراف وغير المعروضة عبر اللغات الفرنسية والألمانية والإيطالية والإسبانية على العديد من المعايير المفصيلة المفكف، بينما يتم تدريبها على بيانات Robust04 الإنجليزية فقط. نطلق سراح سيدي في https://github.com/sapienzanlp/sir.
تفرض فرضية كثافة المعلومات الموحدة (UID) تفضيل بين مستخدمي اللغة للكلمات المهنية بحيث يتم توزيع هذه المعلومات بشكل موحد عبر إشارة. في حين أن آثارها على الإنتاج اللغوي قد تم استكشافها جيدا، إلا أن الفرضية يحتمل أن تجعل تنبؤات حول فهم اللغة والقبول الل
غوي أيضا. علاوة على ذلك، من غير الواضح كيف ينبغي قياس التوحيد في إشارة لغوية --- أو عدم وجوده --- والوحدة اللغوية، على سبيل المثال، الحكم أو مستوى اللغة، يجب أن تعقد هذه التوحيد. نحن هنا التحقيق في هذه الجوانب من الفرضية UID باستخدام وقت القراءة وبيانات القبول. في حين أن نتائج وقت القراءة لدينا تعمل بشكل عام مع العمل السابق، فإنها تتفق أيضا مع تأثير خطي ضعيف ضعيف، والتي ستكون متوافقة مع توقعات UID. للحصول على أحكام القبول، نجد دليلا أكثر وضوحا على أن عدم التوحيد في كثافة المعلومات هو التنبؤ بانخفاض القبول. ثم نستكشف عمليات تشغيل متعددة من UID، بدافع من تفسيرات مختلفة للفرضية الأصلية، وتحليل النطاق الذي تمارسه الضغط نحو التوحيد. تشير القوة التوضيحية المتمثلة في مجموعة فرعية من عمليات الفرعية المقترحة إلى أن أقوى الاتجاه قد يكون الانحدار نحو مفاجأة يعني في جميع أنحاء اللغة، بدلا من العبارة أو الجملة أو الوثيقة --- اكتشاف يدعم تفسير نموذجي ل UID، أي أنه هو المنتج الثانوي للمستخدمين اللغويين تعظيم استخدام قناة اتصال (افتراضية).
تفترض أن معظم الدراسات السابقة حول حالة المعلومات (IS) تصنيف وتجسير التعرف anaphora أن ذكر الذهب أو معلومات شجرة النحوية يتم إعطاء (Hou et al.، 2013؛ Roesiger et al.، 2018؛ هو، 2020؛ يو ويوسيو، 2020) وبعد في هذه الورقة، نقترح نهج عصبي نهاية إلى نهج ل
تصنيف حالة المعلومات. يتكون نهجنا من مكون استخراج الأوراق ومكون مهمة لحالة المعلومات. خلال وقت الاستدلال، يأخذ نظامنا نصا الخام حيث أن المدخلات ويولد يشرح مع وضع المعلومات الخاصة بهم. على Corpus Isnotes (Markert et al.، 2012)، نوضح أن مكون تعيين حالة معلوماتنا يحقق نتائج جديدة من الفنادق الجديدة على الحبيبات الجميلة التصنيف بناء على طلب الذهب. علاوة على ذلك، يؤدي نظامنا أفضل بكثير من خطوط الأساس الأخرى لكلا من الاستخراج والحبوب الدقيق التصنيف في الإعداد النهائي. أخيرا، نطبق نظامنا على باشي (Roesiger، 2018) و SCICORP (Roesiger، 2016) للتعرف على الحسارة المرجعية. نجد أن نظامنا المنتهي بنا مدروسا على ISNOT يحقق نتائج تنافسية بشأن تجسيد التعرف على الحساب مقارنة بالنظام السابق الذي يعتمد على معلومات النحوية وتدرب على مجموعات البيانات داخل المجال (YU و Poesio ، 2020).
تتفوق أنظمة تلخيص التلخيص الحالية على نظرائهم المستخرجين، لكن اعتمادهم على نطاق واسع يمنعهم الافتقار المتأصل إلى الترجمة الشفوية. أنظمة تلخيص الاستخراجية، على الرغم من أنه قابل للتفسير، تعاني من التكرار وقلة الاتساق المحتمل. لتحقيق أفضل ما في العالمي
ن، نقترح سهولة، وهو إطار خارجي - مبادرة ينشئ ملخصات إغراقية موجزة يمكن تتبعها مرة أخرى إلى ملخص مستخرج. يمكن تطبيق إطارنا على أي مشكلة توليد نصية قائمة على الأدلة ويمكن أن تستوعب النماذج المحددة مسبقا في بنية بسيطة. نستخدم مبدأ معلومات عنق المعلومات لتدريب الاستخلاص والتجريد المشترك في أزياء نهاية إلى نهاية. مستوحاة من البحث السابق الذي يستخدمه البشر إطارا من مرحلتين لتلخيص المستندات الطويلة (Jing و McKeown، 2000)، فإن إطار عملائنا أولا يستخرج كمية محددة مسبقا من الأدلة التي تمتد ثم يولد ملخصا باستخدام الأدلة فقط. باستخدام التقييمات التلقائية والبشرية، نوضح أن الملخصات التي تم إنشاؤها أفضل من خطوط الأساسيات الاستخراجية والاستخراجية الدخرية.
تستخدم العديد من الأعمال الحديثة تنظيم التناسق "لتحسين تعميم النماذج المدربة مسبقا بشكل جيد، متعدد اللغات والإنجليزية فقط. هذه الأعمال تشجع النواتج النموذجية على أن تكون مشابهة بين الإصدار المضطربة والطبيعية من المدخلات، وعادة من خلال معاقبة اختلاف K
ullback - Leibler (KL) بين توزيع الاحتمالية للنموذج المضطرب والطبيعي. نعتقد أن خسائر الاتساق قد تنظم ضمنا المشهد الخسارة. على وجه الخصوص، نبني على ما يكافؤ على العمل الذي ينظم ضمنيا أو بوضوح تنظيم أثر مصفوفة معلومات فيشر (FIM)، تضخيم التحيز الضمني ل SGD لتجنب الحفظ. تظهر نتائجنا الأولية من الناحية التجريبية وموضوعيا أن خسائر الاتساق مرتبطة بالفترة الفائضة، وإظهار أن الحد الأدنى المسطح الضمني بتتبع صغير من FIM يحسن الأداء عند ضبط نموذج متعدد اللغات على لغات إضافية. نحن نهدف إلى تأكيد هذه النتائج الأولية على مزيد من مجموعات البيانات، واستخدام رؤىنا لتطوير تقنيات منخفضة اللغات متعددة اللغات.
تقدم هذه الورقة نهجا استخراج غير مخطئ لتلخيص المستندات الطويلة العلمية بناء على مبدأ اختناق المعلومات.مستوحاة من العمل السابق الذي يستخدم مبدأ اختناق المعلومات لضغط الجملة، فإننا نقدمها لتلخيص مستوى الوثيقة مع خطوتين منفصلين.في الخطوة الأولى، نستخدم
إشارة (إشارات) كاستعلامات لاسترداد المحتوى الرئيسي من المستند المصدر.بعد ذلك، يقوم نموذج لغة مدرب مسبقا بإجراء المزيد من الجملة والتحرير لإرجاع الملخصات المستخرجة النهائية.الأهم من ذلك، يمكن امتدت عملنا بمرونة إلى إطار متعدد المشاهدات من قبل إشارات مختلفة.التقييم التلقائي على ثلاث مجموعات بيانات وثيقة علمية تتحقق من فعالية الإطار المقترح.يشير التقييم البشري الإضافي إلى أن الملخصات المستخرجة تغطي المزيد من جوانب المحتوى أكثر من النظم السابقة.
اعتمدت نهج استخراج المعلومات الحديثة على تدريب النماذج العصبية العميقة. ومع ذلك، يمكن أن تتجاوز هذه النماذج بسهولة الملصقات الصاخبة وتعاني من تدهور الأداء. في حين أنه من المكلف للغاية تصفية الملصقات الصاخبة في موارد تعليمية كبيرة، فإن الدراسات الحديث
ة تظهر أن مثل هذه الملصقات تتخذ المزيد من الخطوات التدريبية التي سيتم حفظها وتكون نسيانها بشكل أكثر تواترا من الملصقات النظيفة، وبالتالي يتم تحديدها في التدريب. بدافع من هذه الخصائص، نقترح إطارا بسيطا بانتظام بسيطة لاستخراج المعلومات التركز على الكيان، والذي يتكون من العديد من النماذج العصبية مع هياكل متطابقة ولكن تهيئة معلمة مختلفة. يتم تحسين هذه النماذج بشكل مشترك مع الخسائر الخاصة بالمهمة ويتم تنظيمها لتوليد تنبؤات مماثلة تستند إلى فقدان اتفاقية، تمنع التجديدات الخارجية على الملصقات الصاخبة. تظهر تجارب واسعة على نطاق واسع على نطاق واسع ولكن صاخبة لاستخراج المعلومات، Tacred و Conll03، فعالية إطار عملنا. نطلق سرد علاماتنا للمجتمع للبحث في المستقبل.