بحث متقدم
ترتيب حسب
فلترة حسب
يعدّ الهطل المطري أحد أكثر عناصر الدورة الهيدرولوجية صعوبة و تعقيداً من حيث الفهم و النمذجة، بسبب تعقيد العمليات الجوية التي تولد الأمطار. تأتي أهمية البحث من العلاقة المباشرة لكميات الأمطار الهاطلة بالأنشطة الاقتصادية و الاجتماعية للسكان، و مجالات ا لتخطيط لإدارة الموارد المائية، لا سيما ما يتعلق منها بعملية التنمية الزراعية. يهدف البحث إلى إلقاء الضوء على كميات الأمطار الهاطلة في محطة طرطوس الواقعة في الجزء الجنوبي من الساحل السوري، و تطبيق نموذج من نماذج بوكس- جنكنز للتنبؤ بكمياتها المستقبلية. تم اختبار نماذج متعددة لـ ARIMA، و أخضعت النماذج لجميع الاختبارات المطلوبة، و قد تبين أن أفضلها كان النموذج ذي المعالم (ARIMA(3,0,4. جرى أثناء الاختبار تقسيم البيانات إلى 43 سنة لبناء النموذج، و ثماني سنوات لاختباره، و قد أعطت نتائج الاختبار دقةً عاليةً في الأداء، كما استخدم النموذج للتنبؤ بقيم الأمطار السنوية لعشرين سنة قادمة.
تم إجراء الدراسة على 65 سيدة من النساء الحوامل المترددات على العيادات الخارجية و الداخلية في قسم النساء و التوليد في مستشفى الأسد الجامعي خلال الفترة الممتدة من شباط 2013 حتى شباط 2014. و تم تقسيمهم الى ثلاث مجموعات الأولى خمس و عشرون مريضة لديهن مخا ض باكر مع أغشية سالمة و الثانية عشرون مريضة لديهن انبثاق اغشية باكر، و المجموعة الثالثة عشرون مريضة للمقارنة. كل المريضات سوف تخضعن للكشف بالموجات ما فوق الصوتية لتقييم التغيرات الطارئة على عنق الرحم (طول عنق الرحم و قطر الفوهة الباطنة) بغرض التنبؤ بالولادة المبكرة ان طول عنق الرحم كمشعر للتنبؤ بالولادة المبكرة ذو حساسية عالية وصلت حتى 91.43% و ذو نوعية أعلى وصلت حتى 100% و ذو قيمة تنبؤية موجبة عالية وصلت حتى 100% و ذو قيمة تنبؤية سلبية 76.92%. إن خطر الولادة في المريضات اللواتي لديهن عنق رحم قصير ( اقل أو يساوي 25 مم) هو 4.33 ضعف أولئك اللواتي لديهن عنق رحم طبيعي ( اكثر من 25 مم). إن قطر الفوهة الباطنة لعنق الرحم كمشعر للتنبؤ بالولادة المبكرة ذو حساسية وصلت حتى 60% و ذو نوعية وصلت حتى 60% و ذو قيمة تنبئية موجبة وصلت حتى 84% و ذو قيمة تنبئية سلبية وصلت حتى 30%.
تزداد أهمية التنبؤ باستجابة إنتاجية المحاصيل المختلفة لمستوى الري لدوره في تحديد معدل الـري الأمثل في ظروف محدودية توافر المياه، و بغية الاستمرار في الإنتاج و تحقيق الريعية العالية. أُجريت هذه الدراسة بهدف تقييم قدرة البرنامج CropWat على التنبؤ بتأ ثير الري الناقص فـي محـصول القطـن و لإيجاد بعض الخيارات البديلة لري محصول القطن. جمعت بيانات إنتاجية المحصول و استهلاكه المـائي من التجارب الحقلية لثلاثة مواسم متتالية (2007 – 2009) لتقييم مدى استجابة محصول القطن المروي بالتنقيط للري الناقص (DI).
يعتبر التبخر- نتح أحد المكونات الهامة في الدورة الهيدرولوجية، و تعد القدرة على التنبؤ الدقيق بقيم هذه الظاهرة من العوامل الهامة في العديد من تطبيقات الموارد المائية. تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري, باستخدام الشبكات العصبية الاصطناعية و نظام الاستدلال الضبابي.
تعتبر الأمطار من الظواهر غير الخطية المعقدة، و التي تتطلب النمذجة الرياضية غير الخطية لغرض التنبؤ بها. هذه الدراسة تقارن أداء التنبؤ بالأمطار ليوم مقدماً، حيث وضعت اثنين من نماذج الشبكات العصبونية (ذات التغذية الأمامية) للتنبؤ بأمطار يومية متتالية لثلاثة أشهر (كانون الأول، كانون الثاني، شباط) و هذه النماذج هي: نموذج الشبكات العصبية الاصطناعية التقليدية (ANN) و نموذج عصبوني مع تقنية التحويل المويجي وفق (wavelet- neural) طريقتين مختلفتين لبناء النماذج و باستخدام نوعين من المويجات من عائلة دوبغنز (db2, db5) و من أجل المقارنة بين أداء النماذج في قدرتها على التنبؤ بالأمطار على المدى القصير (ليوم و يومين و ثلاثة أيام مقدماً) للأشهر الأخيرة من فترة الدراسة، فقد استخدمت بعض المعايير الإحصائية، التي اشتملت على جذر متوسط مربعات الأخطاء (RMSE) و معامل الارتباط (R).
تهدف هذه الدراسة إلى تحديد العناصر المناخية الأكثر تأثيرا على علاقة الهطل - جريان لنهر الكبير الشمالي, باستخدام الشبكات العصبية الاصطناعية. حيث احتوت مدخلات الشبكات العصبية على الهطل المطري و التدفق في النهر, وفق تأخرات زمنية مختلفة, بالإضافة إلى هنص ر من العناصر المناخية في كل نموذج من النماذج, لتحديد النموذج الأفضل و الأكثر دقة.
تعتمد دراسة و تصميم السدود المائية بشكل رئيس على التنبؤات بأحجام المياه الجارية في الأنهار أو المتوقع ورودها مستقبلاً، باستخدام تحليل السلاسل الزمنية للقياسات التاريخية. يهدف البحث إلى إعداد دراسة إحصائية لحجوم المياه الشهرية الواردة في نهر الروس في الساحل السوري و التنبؤ المستقبلي بهذه الحجوم. و اعتمدت نماذج "بوكس– جنكنز" في تحليل بيانات السلسلة الزمنية، و ذلك لارتفاع درجة الدقة في تنبؤاتها. اعتمدنا بيانات حجوم المياه الشهرية لمدة 15 عاماً، و بعد إجراء الاختبارات المطلوبة على بواقي النموذج، تبيّن أن أفضل نموذج يمثل البيانات هو SARIMA(0,1,2) (1,2,1)12، و بعد تقسيم البيانات إلى 14 سنة لبناء النموذج و سنة واحدة لاختباره و اعتماداً على أصغر قيمة للمتوسط الموزون للمعايير RMSE, MAP, MAE، فإن أفضل نموذج للتنبؤ هو النموذج SARIMA(1,1,0) (0,1,1)12، و قد أعطى النموذج تنبؤات قريبة من حجوم المياه الشهرية الواردة في النهر المقيسة فعلياً.
يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة م ن أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.
التنبّؤ بالطقس و خاصةً الأمطار، هي واحدة من المهام العملية الأكثر تحدياً و أهمية، و التي تقوم بها خدمات الأرصاد الجوية في جميع أنحاء العالم، علاوة على كونه إجراء معقد يتطلب مجالات متخصصة و متعددة من الخبرات. في هذه الورقة، أقترح نموذج الشبكات العصبي َّة (ANNs) مع تحويل المويجات كأداة للتنبؤ بالأمطار الشّهرية بشكل متتالي بالاعتماد على البيانات السابقة لهطول الأمطار (1933-2009)، المأخوذة من محطة حمص للأرصاد الجوية. حيث تم تحليل السلسلة الزمنية للأمطار إلى معاملاتها التفصيلية و التقريبية على ثلاث مستويات باستخدام تحويل المويجات المتقطع (Discrete Wavelet Transform (DWT، و استخدمت الشَّبكة العصبيَّة أمامية التغذية مع خوارزمية الانتشار العكسي في عملية التعلم و التنبّؤ. توصلت الدراسة إلى أن الشبكة العصبية WNN ذات الهيكلية (1-8-8-8-5)، قادرة على التنبؤ بالأمطار الشهرية في محطة حمص على المدى الطويل بمعامل تحديد وجذر متوسط مربعات الأخطاء (7.74mm,0.98) على الترتيب. تقدم تقنية تحويل المويجات ميزة مفيدة قائمة على تحليل البيانات، مما يحسن من أداء النموذج، و تطبق هذه التقنية في نماذج الشبكات العصبية الاصطناعية للأمطار لأنها بسيطة، كما يمكن تطبيق هذه التقنية لنماذج أخرى.
في هذا البحث, نقارن ثلاثة طرق نمذجة أهداف مباريات كرة القدم مع الأخذ بعين الاعتبار الأداء المتنبئ به اعتمادا على جميع المباريات في كؤوس الفيفا الأربعة السابقة 2002--2014: نماذج الانحدار بواسون, طرق الغابات العشوائية, وطرق الترتيب.
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها