بحث متقدم
ترتيب حسب
فلترة حسب
يشكّل التبخر-نتح أحد عناصر الدورة الهيدرولوجية، الذي يصعب قياس كمياته الفعلية في الشروط الحقلية، لذلك يجري تقديره انطلاقاً من علاقات تجريبية تعتمد على بيانات عناصر المناخ، و تتضمن تلك التقديرات أخطاء متنوّعة بسبب عمليات التقريب. و يهدف البحث إلى تقدي ر دقيق لكمية التبخر الشهري في منطقة صافيتا, و يعتمد البحث على تقانة الشبكة العصبية الصنعية، حيث بُني الأنموذج الرياضي باستخدام Neural Fitting Tool (nftool) إحدى أدوات الماتلاب، و اعتمد الأنموذج على البيانات الشهرية لدرجة حرارة الهواء و الرطوبة النسبية في محطة صافيتا، كما استُخدِمت بيانات التبخر الشهري من حوض التبخر الأميركي صنف A لغرض التحقق من صحة أداء الشبكة، بعد تحويل الأنموذج إلى شكل قالب جاهز باستخدام تقانة Simulink المتاحة في حزمة برمجيات الماتلاب. أثبتت نتائج الدراسة أنَّ الشبكة العصبية الصنعيَّة متعددة الطبقات، و ذات الانتشار العكسي للخطأ تعطي نتائج جيدة في تقويم التبخر الشهري، اعتماداً على مجموعة البيانات المستخدَمة.
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها