يمكن أن تساعد خوارزمية تجميع موثوقة للحوارات الموجهة نحو المهام في تحليل المطور وتحديد مهام الحوار بكفاءة.من الصعب مباشرة تطبيق خوارزميات تجميع النص العادي المسبق للحوارات الموجهة نحو المهام، بسبب الاختلافات الكامنة بينهما، مثل COMERELER، إغفال وتعبي
ر التنوع.في هذه الورقة، نقترح نموذج شبكة حوار تجميع مهمة التجميع للتجميع الموجه في المهام.يجمع النموذج المقترح بين تمثيلات الكلام على دراية السياق والتحويل عبر الحوار عن تجميع الحوارات الموجهة نحو المهام.تستخدم استراتيجية تدريبية تكرارية نهاية لإنهاء تجميع الحوار وتعلم التمثيل بشكل مشترك.تظهر التجارب في ثلاث مجموعات بيانات عامة أن نموذجنا يتفوق بشكل كبير على خطوط أساسية قوية في جميع المقاييس.
تعرض نماذج اللغة متعددة اللغات أداء أفضل لبعض اللغات مقارنة بالآخرين (Singh et al.، 2019)، وعدد العديد من اللغات لا تستفيد من تقاسم متعدد اللغات على الإطلاق، من المفترض أن تكون نتيجة تجزئة متعددة اللغات (بيزال O وآخرون)2020).يستكشف هذا العمل فكرة تعل
م نماذج اللغة متعددة اللغات بناء على تجميع شرائح أحادية الأونلينغ.نعرض تحسينات كبيرة على تجزئة وتدريب وتعدد اللغات القياسية عبر تسعة لغات بشأن مهمة الإجابة على سؤال، سواء في نظام نموذج صغير ونموذج حجم قاعدة بيرت.
نحن تصف مهمة Sigmorphon الثانية على التورفولوجيا غير المدعومة: الهدف من المهمة المشتركة SIGMORPHON 2021 على تجميع النماذج المورفولوجية غير المزدئة غير المنشأة هو أنواع الكلمات العنقودية من كوربوس نص الخام إلى النماذج.تحقيقا لهذه الغاية، نطلق سرورا لم
دة 5 لغات تطوير و 9 لغات اختبار، وكذلك النماذج الجزئية الذهبية للتقييم.نتلقى 14 تقريرا من 4 فرق تتبع الاستراتيجيات المختلفة، ويستند أفضل نظام أداء على قواعد النحوية.تختلف النتائج بشكل كبير عبر اللغات.ومع ذلك، فإن جميع الأنظمة متفوقة من قبل Lemmmmmmmatizer تحت إشراف، مما يعني أنه لا يزال هناك مجال للتحسين.
يصف هذا العمل تقديم Edinburgh إلى المهمة Sigmorphon 2021 المشتركة 2 على تجميع النموذج المورفولوجي غير المقترح.إعطاء إدخال النص الخام، وكانت المهمة لتعيين كل رمز رمزية إلى كتلة مع الرموز الأخرى من نفس النموذج.نحن نستخدم تجزئة محول القواعد جنبا إلى جنب
مع الاستدلال القائم على التردد للتنبؤ مجموعات النماذج.حقق نظامنا أعلى متوسط درجة F1 عبر 9 لغات اختبار، ووضع أولا من 15 رسالة.
في الورقة، نتعامل مع مشكلة تجميع وثائق النص غير المدعومة باللغة البولندية.هدفنا هو مقارنة النهج الحديثة بناء على نمذجة اللغة (DOC2VEC و BERT) مع تلك الكلاسيكية، I.E.، TF-IDF و WordNet-تتم التجارب على ثلاث مجموعات بيانات تحتوي على أوصاف مؤهلات.أظهرت ن
تائج التجارب أن تدابير التشابه القائمة على WordNet يمكن أن تنافس وحتى التوفيق بين النهج القائمة على التضمين.
يعرض هذا البحث دراسة مرجعية حول استخدام تقنيات الذكاء الصنعي والتنقيب عن المعطيات في أنظمة مكافحة غسيل الأموال. نقارن بين عدة منهجيات متبعة في أوراق بحثية مختلفة بهدف تسليط الضوء على تطبيقات الذكاء الصنعي في حل مشاكل الحياة الواقعية.
تم في هذا البحث اقتراح نظام هجين بين الخوارزمية الجينية و شبكة العنقدة
كوهنين المضببة, حيث تعد الخوارزمية الجينية أحد أساليب الذكاء الصنعي و هي من
الأساليب الحديثة.
قدم في هذا البحث تعديل لخوارزمية عنقدة البيانات الMountain الضبابية, حيث
تمكنا من جعل هذه الخوارزمية تعمل بشكل آلي, و ذلك من خلال إيجاد طريقة لتقسيم
الفضاء و تحديد قيم وسطاء الدخل و شرط التوقف آلياً بدلاً من إدخالها من قبل
المستخدم.
نقدم في هذا البحث تعديل لخوارزمية عنقدة البيانات الMountain الضبابية,
تمكنا من جعل هذه الخوارزمية تعمل بشكل آلي, و ذلك من خلال إيجاد طريقة لتقسيم
الفضاء و تحديد قيم وسطاء الدخل و شرط التوقف آلياً بدلاً من إدخالها من قبل
المستخدم.
نقدم في هذا البحث خوارزمية جديدة لحل بعض المشاكل التي تعاني منها
خوارزميات عنقدة البيانات كالK-Means. هذه الخوارزمية الجديدة قادرة على
عنقدة مجموعة من البيانات بشكل منفرد دون الحاجة لخوارزميات عنقدة أخرى.