بحث متقدم
ترتيب حسب
فلترة حسب
مع ازدياد الاعتماد على الطاقة الشمسية بوصفها مصدرًا للحصول على الطاقة الكهربائية، طورت عدة تقنيات لملاحقة نقطة الاستطاعة العظمى المستخدمة في اللواقط الكهروضوئية بهدف الحصول على أعظم طاقة كهربائية يمكن توليدها من النظام الكهروضوئي، و تختلف هذه التقنيا ت من حيث البساطة و سرعة الأداء و الأدوات المستخدمة فيها (كالحساسات) و الكلفة الاقتصادية. تتضمن هذه الدراسة مقارنة عشر من الطرائق التقليدية المستخدمة في ملاحقة نقطة الاستطاعة العظمى للواقط الكهرضوئية باختلاف أنواعها، إِذ قيم أداؤها من وجهة نظر طاقية باستخدام برنامج Matlab آخذين بالحسبان أشكالا مختلفة للإشعاع ، الشمسي. فضلا عن التقييم الاقتصادي لها؛ و ذلك لإجراء مقارنة بناء على الأداء و الكلفة لتحديد الخيار الأمثل بينها.
استخدم المتحكم ذو المنطق العائم بهدف ربط النظام الكهروضوئي PV بالشبكة الكهربائية عبر مبدل ثلاثي الطور مقاد (عاكس),إذ يقوم هذا المتحكم بملاحقة نقطة الاستطاعة العظمى وحقن أكبر استطاعة ممكنة من نظام PV إلى الشبكة؛ وذلك عن طريق تحديد زاوية القدح الواجب ت طبيقها على القواطع، و قد اختيرت المتحولات اللغوية حتى يحدد مقدار التغيير في زاوية القدح للمبدل لملاحقة الاستطاعة العظمى.
يرتكز البحث على المرحلة الأولى DC/DC في النظام الكهروضوئي الشمسي، حيث تم استخدام تقنية الـتحكم المرتبط التموج RCC في ملاحقة نقطة الاستطاعة الأعظمية للمنظومات الكهروضوئية. تستفيد هذه التقنية من تموج الإشارة الموجود أصلاً في المبدلات DC/DC، حيث يُعامل هذا التموج كتغير يمكن الوصول منه إلى تقارب أمثلي. إن الميزة الأساسية لتقنية التحكم بعلاقة التموج (RCC) أنها تلاحق نقطة الاستطاعة العظمى ((MPP بسرعة و تحتاج إلى دارات تشابهية بسيطة و غير مكلفة لتطبيقاتها، و سيتم التحقق من صحة النتائج عملياً.
يعرض هذا البحث كيفية تصميم و تنفيذ دارة للتحكم بحركة لوح كهروضوئي للحصول على أعظم مردود ممكن، و ذلك عن طريق تصميم نظام مكون من دمج عدة طرق من التحكم مع بعضها البعض، و يتم التصميم من خلال تشكيل نظام موحد ندمج فيه التحكم بواسطة حساسات الضوء من جهة و ال تحكم عن طريق قاعدة بيانات من جهة أخرى بالإضافة الى مقارنة زاوية اللوح الكهروضوئي في كلا الطريقتين. تم تصميم الدارة المقترحة و إجراء المحاكاة لها و تنفيذها بنموذج مصغر يحاكي الواقع، و مناقشة النتائج و ذلك لتبيان الفائدة و الهدف من النظام المقترح استخدامه و ذلك بواسطة المتحكم الصغري Programmable Interface Controller(PIC).
إن الهدف الرئيس لهذا البحث هو تصميم نظام شحن بطاريات بالطاقة الشمسية الأعظمية, و قد تم استخدام نظام تتبع للاستطاعة الأعظمية Maximum power point tracking (MPPT) system, مكون من مبدل (رافع – خافض) للجهد المستمر buck-boost Direct Current DC/DC converter , المبدل مقاد بواسطة متحكم صغري, تمت برمجته بطريقة الموصلية المتزايدة Incremental Conductance (InCond) و تعد طريقة سهلة و موثوقة للتتبع. تم اختبار نظام الشحن المقترح و النتائج التي حصلنا عليها تؤكد التحكم الدائم بعملية الشحن للبطارية. تم إجراء دراسة مقارنة مع جهاز شحن شمسي يعتمد التحكم بعرض النبضة PWM, و قد أوضحت النتائج أنه تم شحن المدخرة الموصولة مع نظام الشحن المقترح بوقت أسرع, مع الأخذ بالحسبان ساعات الإشعاع الشمسي باليوم, و مواصفات اللوح الشمسي المستخدم, و هذا يؤكد وثوقية أداء نظام الشحن المقترح.
يعتبر التحكم الآلي ملتقى المعارف الهندسية، إذ ينبغي مراقبة و ضبط المتغيرات التي تتفاعل في جميع العمليات الصناعية كي تؤدي تجهيزات المنشآت الوظائف التي شيدت من أجلها.إن تكنولوجيا نظام التحكم الآلي لها دور كبير في تخفيف أعباء الحياة اليومية، و جعلها أكثر رفاهية، فنجد تطبيقات التحكم الآلي في معظم الأجهزة المنزلية ، مثل : التبريد والتكييف و الأفران و الغسالات و غيرها. و لقد أصبحت مفاهيم التحكم الآلي تستخدم في شتى مجالات المعرفة مثل علوم الأحياء و الاقتصاد و الاجتماع و الطب و التربية.
محول الطاقة DC-DC converter هو أحد أهم العناصر الأساسية المعتمدة من أجل الاستخدام الفعال لمصادر الطاقات المتجددة, الهدف الرئيسي لهذه المقالة هو استخدام نظام لتتبع نقطة الاستطاعة الأعظمية Maximum power point tracking system (MPPT مع محول رافع- خافض لل جهد Buck-Boost converter للحصول على أقصى طاقة ممكنة لنظام كهروشمسي photovoltaic (PV) system وفق تغير شروط شدة الإشعاع و درجة الحرارة المحيطة و الحمل.
يتناول البحث نمذجة شبكة عصبونية صنعية متعددة الطبقات ذات تغذية أمامية مدربة باستخدام خوارزمية الانحدار التدريجي للخطأ ذات معامل الزخم و معدل التعلم المتغير، و ذلك لتقدير خرج الشبكة العصبونية الموافق لنسبة التشغيل الأمثل لمبدل رافع الجهد المستمر اعتما داً على استخدام قياسات تغيرات كل من درجة حرارة الخلية الشمسية و شدة الإشعاع الشمسي، لتتبع نقطة الاستطاعة العظمى MPP لنظم الطاقة الشمسية الكهروضوئية. بالتالي يعتبر المتحكم DMPPT-ANN (Developed MPPT-ANN) المقترح في البحث، مستقل في عمله عن استخدام القياسات الكهربائية لخرج نظام PV لتحديد نسبة التشغيل، و دون الحاجة لاستخدام متحكم تناسبي-تكاملي PI) (Proportional Integral للتحكم في دورة عمل مبدل الجهد، و هذا من شأنه تحسين الأداء الديناميكي للمتحكم المقترح بتحديد نسبة التشغيل بدقة و سرعة فائقة. في هذا السياق، يناقش البحث الاختيار الأمثل لهيكلية الشبكة المقترحة من حيث تحديد العدد الأمثل للطبقات الخفية و العدد الأمثل للعصبونات الموجودة فيها، بتقييم قيم متوسط مربع الخطأ و معامل الارتباط الناتجة بعد كل عملية تدريب للشبكة العصبونية. بعد ذلك يعتمد نموذج الشبكة النهائي الذي يمتلك الهيكلية الأمثل، ليشكل المتحكم المتقرح في البحث DMPPT-ANN لتتبع نقطة MPP لنظام.PV أظهرت نتائج المحاكاة المنجزة في بيئة Matlab/Simulink، الأداء الأفضل للمتحكم DMPPT-ANN المقترح المرتكز على نموذج الشبكة العصبونية MLFFNN، و ذلك بدقة تقدير نسبة التشغيل و بتحسين سرعة استجابة نظام PV في الوصول لنقطة MPP، بالإضافة إلى التخلص بشكل نهائي من التذبذبات الناتجة في الحالة المستقرة في منحني استجابة استطاعة خرج نظام PV مقارنة مع استخدام عدد من المتحكمات المرجعية المستخدمة: متحكم تتبع متقدم MPPT-ANN-PI مرتكز على شبكة عصبونية ANN لتقدير توتر نقطة MPP مع متحكم PI تقليدي، متحكم عائم MPPT-FLC ومتحكم تتبع تقليدي MPPT-INC يستخدم تقنية زيادة الناقلية INC
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها