ترغب بنشر مسار تعليمي؟ اضغط هنا

مقارنة الطرائق التقليدية في ملاحقة نقطة الاستطاعة العظمى في اللواقط الشمسية

Comparison of traditional MPPT techniques for solar panels

2580   0   83   0 ( 0 )
 تاريخ النشر 2014
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

مع ازدياد الاعتماد على الطاقة الشمسية بوصفها مصدرًا للحصول على الطاقة الكهربائية، طورت عدة تقنيات لملاحقة نقطة الاستطاعة العظمى المستخدمة في اللواقط الكهروضوئية بهدف الحصول على أعظم طاقة كهربائية يمكن توليدها من النظام الكهروضوئي، و تختلف هذه التقنيات من حيث البساطة و سرعة الأداء و الأدوات المستخدمة فيها (كالحساسات) و الكلفة الاقتصادية. تتضمن هذه الدراسة مقارنة عشر من الطرائق التقليدية المستخدمة في ملاحقة نقطة الاستطاعة العظمى للواقط الكهرضوئية باختلاف أنواعها، إِذ قيم أداؤها من وجهة نظر طاقية باستخدام برنامج Matlab آخذين بالحسبان أشكالا مختلفة للإشعاع ، الشمسي. فضلا عن التقييم الاقتصادي لها؛ و ذلك لإجراء مقارنة بناء على الأداء و الكلفة لتحديد الخيار الأمثل بينها.

المراجع المستخدمة
J.Schaefer, Review of Photovoltaic Power Plant Performance and Economics, IEEE Trans. Energy Convers., vol. EC-5,pp. 232-238, June, 1990
G.J.Yu, Y.S.Jung, J.Y.Choi, I.Choy, J.H.Song and G.S.Kim, A Novel Two-Mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms, Proc. Photovoltaic Specialists Conference, 2002, pp. 1531-1534
T.Noguchi, S.Togashi and R.Nakamoto, Short- Current Pulse-Based Maximum-Power-Point Tracking Method for Multiple Photovoltaic-and- Converter Module System, IEEE Trans. Ind. Electron., vol.49, no.1, pp. 217-223, 2002
D.P.Hohm and M.E.Ropp, Comparative Study of Maximum Power Point Tracking Algorithms Using an Experimental, Programmable, Maximum Power Point Tracking Test Bed, Proc. Photovoltaic Specialist Conference, 2000, pp. 1699-1702
كتيبات و دراسات من الشركة السورية الأوكرانية لإنتاج و تسويق اللواقط الكهروضوئية.
قيم البحث

اقرأ أيضاً

يتناول البحث تحليل و دراسة أداء الألواح الشمسية، حيث اخترنا العمل على اللوح (الموديول) الشمسي MSX-50، بالإضافة إلى تحسين استطاعته عن طريق تعقّب نقطة الاستطاعة العظمى MAXIMUM POWER POINT، و يتم ذلك باستخدام مقّطع رافع للجهد الحصول على أكبر استطاعة ممك نة من اللوح الشمسي. تم ّوضع نموذج رياضي مكافئ لعمل اللوح الشمسي الحقيقي (غير مثالي) من خلال دراسة الخلايا الكهروضوئيّة (PHOTOVOLTAIC CELLS)، حيث تمّ استخدام الطريقة التكرارية بالإضافة لخوارزمية نيوتن-رافسون من أجل تحديد قيمة المقاومة التسلسلية للموديول Rs، و المقاومة التفرعية Rp. كما تم تنفيذ خوارزمية الاضطراب و المراقبة Perturbation and Observation P&O، بالإضافة إلى دراسة و تصميم دارة المقطّع chopper و اختيار مكونّاتها L,C (المكثف و الملف) بناءً على تحديد كلٍّ من تردد عمل المقطع و عاملي التموج للجهد و التيّار. بناءً على ماسبق، قمنا بإجراء عملية النمذجة للموديول الشمسي MSX-50 باستخدام برنامج MATLAB/SIMULINK، حيث صممنا واجهة مستخدم رسومية GUI لعرض خصائص الموديول و حساب المقاومتين Rs,Rp، بالإضافة إلى بناء خوارزمية P&O و تصميم دارة المقطّع الرافع للجهد (boost-step up). تمّ تطبيق النموذج المقترح على حمولة أومية وفق مبدأ ملاحقة نقطة الاستطاعة العظمىMPP ،و مناقشة النتائج لحالتي توصيل الموديول الشمسي على الحمل مباشرةً، و التوصيل عن طريق مقطّع مقاد بخوارزمية P&O.
استخدم المتحكم ذو المنطق العائم بهدف ربط النظام الكهروضوئي PV بالشبكة الكهربائية عبر مبدل ثلاثي الطور مقاد (عاكس),إذ يقوم هذا المتحكم بملاحقة نقطة الاستطاعة العظمى وحقن أكبر استطاعة ممكنة من نظام PV إلى الشبكة؛ وذلك عن طريق تحديد زاوية القدح الواجب ت طبيقها على القواطع، و قد اختيرت المتحولات اللغوية حتى يحدد مقدار التغيير في زاوية القدح للمبدل لملاحقة الاستطاعة العظمى.
إن محدودية مصادر الطاقة العالمية من الوقود الاحفوري و النووي, استوجب البحث الملّح عن مصادر طاقة بديلة. بما يحقق موازنة العرض و الطلب دون اللجوء أو التخفيف قدر الإمكان من المولدات التي تعتمد على الغازات, و الوقود الأحفوري. و تعتبر السلامة البيئية من ا لشروط الهامة لمصدر الطاقة, حيث أن الطلب المتزايد على مصادر الطاقة التقليدية جعل من الضروري تحسين تكلفة مصادر الطاقة غير التقليدية, و الاعتماد على الطاقة الشمسية بوصفها مصدر للحصول على الطاقة الكهربائية. يقدم البحث نموذجاً لنظام PVمع دراسة تأثير تغير شروط العمل (الإشعاع, درجة الحرارة), و بعض العوامل (المقاومة التسلسلية RS, و التفرعية RP, و عامل المثالية A) على مميزات (I-V) و (P-V), و تم وضع نموذج نظام الطاقة الكهروشمسي المستقل باستخدام MatLab, و للحصول على أعظم طاقة كهربائية يمكن توليدها من النظام الشمسي طورت عدة تقنيات لملاحقة نقطة الاستطاعة العظمى و استخدمت في هذا البحث خوارزمية P&O بتقنية MPPT, و تم مقارنة الاستطاعة المولدة المقدمة للحمل مع وجود تقنية MPPT و بدون وجودها و حساب الزيادة في الكفاءة الناتجة من استخدام هذه التقنية.
يرتكز البحث على المرحلة الأولى DC/DC في النظام الكهروضوئي الشمسي، حيث تم استخدام تقنية الـتحكم المرتبط التموج RCC في ملاحقة نقطة الاستطاعة الأعظمية للمنظومات الكهروضوئية. تستفيد هذه التقنية من تموج الإشارة الموجود أصلاً في المبدلات DC/DC، حيث يُعامل هذا التموج كتغير يمكن الوصول منه إلى تقارب أمثلي. إن الميزة الأساسية لتقنية التحكم بعلاقة التموج (RCC) أنها تلاحق نقطة الاستطاعة العظمى ((MPP بسرعة و تحتاج إلى دارات تشابهية بسيطة و غير مكلفة لتطبيقاتها، و سيتم التحقق من صحة النتائج عملياً.
يعالج هذا البحث تحسين كفاءة نظم القدرة الشمسية الكهروضوئية باستخدام متحكم تتبع نقطة الاستطاعة العظمى، المرتكز في عمله على تقنيات تتبع تستخدم طريقة التحكم المباشر للتحكم في دورة عمل مبدل جهد مستمر لتحقيق عمل النظام الكهروضوئي عند نقطة الاستطاعة العظمى في ظل التغيرات الجوية المختلفة من شدة إشعاع شمسي و درجة حرارة محيطة. في هذا السياق، يتركز عملنا على محاكاة مكونات نظام توليد الطاقة من نظام كهروضوئي، مبدل رافع للجهد المستمر و متحكم MPPT في بيئة Matlab/Simulink. تتم محاكاة المتحكم MPPT باعتماد عدة خوارزميات: خوارزمية التوتر الثابت، خوارزمية الإضطراب و المراقبة و خوارزمية زيادة الناقلية، باستخدام تابع Embedded MATLAB function. أظهرت نتائج المحاكاة فعالية المتحكم MPPT في زيادة استطاعة النظام الكهروضوئي مقارنة مع عدم استخدام متحكم MPPT. كما أظهرت النتائج الأداء الأفضل لمتحكم MPPT المعتمد على خوارزمية الإضطراب و المراقبة و خوارزمية زيادة الناقلية، مقارنة مع خوارزمية التوتر الثابت في تتبع نقطة الاستطاعة العظمى للنظام في ظل التغيرات الجوية.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا