تصنيف النصوص هو واحد من المجالات الهامة في معالجة اللغة الطبيعية. تمت دراسة مشكلة التصنيف على نطاق واسع في استخراج البيانات ، التعلم الآلي ، وقاعدة البيانات ، و مجال استرجاع المعلومات مع التطبيقات في عدد من المجالات المتنوعة ، مثل التسويق المستهدف ، التشخيص الطبي ، تصفية مجموعة الأخبار ، وتنظيم الوثائق ، تحديد موضوع مقالة إخبارية ، تحليل المشاعر. ومن المعروف أنه من المستحيل تعريف أفضل مصنف نصي فمثلا في مجالات مثل الرؤية الحاسوبية Computer Vision ، هناك إجماع قوي حول طريقة عامة لتصميم النماذج والشبكات العصبونية وغيرها من المنهجيات المعتمدة . و بخلاف ذلك ، لا يزال تصنيف النص يفتقر إلى هذه الطريقة العامة في مجالات كثيرة . نهدف في هذا البحث إلى تقديم مسح شامل لمجموعة من المنهجيات والخوارزميات المستخدمة لتصنيف النصوص ، والتحسينات التي طرأت عليها . سنركز على المقاربات العامة الرئيسية لخوارزميات تصنيف النص وحالات الاستخدام الخاصة بها
Text classification is one of the important areas in natural language processing. The classification problem has been widely studied in data extraction, automated learning, database, and information retrieval with applications in many diverse fields, such as target marketing, medical diagnosis, newsgroup filtering, document organization, topic identification, . For example, in areas such as Computer Vision, there is a strong consensus on a general way of designing models, neural networks, and other approved methodologies. Otherwise, the classification of the text still lacks this general approach in many areas. In this paper, we aim to provide a comprehensive survey of a variety of methodologies and algorithms used to classify texts and their improvements. We will focus on the main general approaches to text classification algorithms and their usage cases.
المراجع المستخدمة
https://link.springer.com/chapter/10.1007%2F978-1-4614-3223-4_6